Cancer Chemotherapy and Pharmacology

, Volume 74, Issue 1, pp 167–176 | Cite as

Bortezomib induces protective autophagy through AMP-activated protein kinase activation in cultured pancreatic and colorectal cancer cells

  • Han Min
  • Min Xu
  • Zhi-rong ChenEmail author
  • Jun-dong Zhou
  • Min Huang
  • Kai Zheng
  • Xiao-ping ZouEmail author
Original Article



Bortezomib, a selective and potent inhibitor of the proteasome, has demonstrated broad anti-tumor activities in many malignancies. In the current study, we aimed to understand the potential resistance factor of bortezomib in cultured pancreatic and colorectal cancer cells.


We observed that bortezomib-induced protective autophagy in cultured PANC-1 pancreatic cancer cells and HT-29 colorectal cancer cells. Inhibition of autophagy by 3-methyladenine (3-MA) and chloroquine enhanced bortezomib-induced apoptosis and cytotoxicity in both PANC-1 and HT-29 cells. Activation of AMP-activated protein kinase (AMPK) was required for bortezomib-induced autophagy induction in PANC-1 and HT-29 cells, and AMPK inhibition by its inhibitor compound C (CC) or RNAi-depletion suppressed bortezomib-induced autophagy, while dramatically enhancing cancer cell apoptosis/cytotoxicity. Meanwhile, significant AMPK activation and autophagy induction were observed after bortezomib stimulation in primary cultured pancreatic cancer cells derived from a patient’s tumor tissue. Both CC and 3-MA facilitated bortezomib-induced cytotoxicity in primary cultured pancreatic cancer cells.


In conclusion, our data here suggest that bortezomib induces protective autophagy in pancreatic and colorectal cancer cells through activating AMPK-Ulk1 signalings. AMPK or autophagy inhibitors could be developed as an adjunct or chemo-sensitizer for bortezomib.


Bortezomib Autophagy AMPK Apoptosis-resistance and chemo-sensitization 



AMP-activated protein kinase


Acetyl-CoA carboxylase




Light chain 3B



This research was supported by grants from the National Natural Science Foundation (to Jun-dong Zhou).

Conflict of interest

No conflict of interests was stated.

Supplementary material

280_2014_2451_MOESM1_ESM.docx (388 kb)
Supplementary material 1 (DOCX 388 kb) The effect of bortezomib on JNK activation. PANC-1 and HT-29 cancer cells were treated with vehicle (V, 0.1 % DMSO) or bortezomib (100 nM), and cultured for 12 or 24 h, or treated with H2O2 (200 μM) for 12 h, p-JNK1/2 and JNK1 were tested by Western blots (A and B). Experiments in this figure were repeated three times


  1. 1.
    Chen A, Xu J, Johnson AC (2006) Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25(2):278–287PubMedGoogle Scholar
  2. 2.
    Mohandas KM, Desai DC (1999) Epidemiology of digestive tract cancers in India. V. Large and small bowel. Indian J Gastroenterol 18(3):118–121PubMedGoogle Scholar
  3. 3.
    Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY, Qi YP, Gysin S, Fernandez-del Castillo C, Yajnik V, Antoniu B, McMahon M, Warshaw AL, Hebrok M (2003) Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425(6960):851–856PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Spalletta G, Cravello L, Piras F, Iorio M, Sancesario G, Marchi A, Caltagirone C, Cacciari C (2013) Rapid-onset apathy may be the only clinical manifestation after dorsal striatum hemorrhagic lesion: a case report. Alzheimer Dis Assoc Disord 27(2):192–194PubMedCrossRefGoogle Scholar
  5. 5.
    Li H, Qian W, Weng X, Wu Z, Zhuang Q, Feng B, Bian Y (2012) Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS ONE 7(6):e37030PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. Correlation with the duration of pore openings in situ. J Biol Chem 276(15):12030–12034PubMedCrossRefGoogle Scholar
  7. 7.
    Dong Y, Sharma VK, Chan BP, Venketasubramanian N, Teoh HL, Seet RC, Tanicala S, Chan YH, Chen C (2010) The Montreal Cognitive Assessment (MoCA) is superior to the Mini-Mental State Examination (MMSE) for the detection of vascular cognitive impairment after acute stroke. J Neurol Sci 299(1–2):15–18PubMedCrossRefGoogle Scholar
  8. 8.
    Hidalgo M (2010) Pancreatic cancer. N Engl J Med 362(17):1605–1617PubMedCrossRefGoogle Scholar
  9. 9.
    Martinsson T, Eriksson T, Abrahamsson J, Caren H, Hansson M, Kogner P, Kamaraj S, Schonherr C, Weinmar J, Ruuth K, Palmer RH, Hallberg B (2011) Appearance of the novel activating F1174S ALK mutation in neuroblastoma correlates with aggressive tumor progression and unresponsiveness to therapy. Cancer Res 71(1):98–105PubMedCrossRefGoogle Scholar
  10. 10.
    Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, Wang L, Soda M, Kikuchi A, Igarashi T, Nakagawara A, Hayashi Y, Mano H, Ogawa S (2008) Oncogenic mutations of ALK kinase in neuroblastoma. Nature 455(7215):971–974PubMedCrossRefGoogle Scholar
  11. 11.
    Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3(3):203–216PubMedCrossRefGoogle Scholar
  12. 12.
    Couzin-Frankel J (2011) Personalized medicine. Pushing the envelope in neuroblastoma therapy. Science 333(6049):1569–1571PubMedCrossRefGoogle Scholar
  13. 13.
    Mosse YP, Laudenslager M, Longo L, Cole KA, Wood A, Attiyeh EF, Laquaglia MJ, Sennett R, Lynch JE, Perri P, Laureys G, Speleman F, Kim C, Hou C, Hakonarson H, Torkamani A, Schork NJ, Brodeur GM, Tonini GP, Rappaport E, Devoto M, Maris JM (2008) Identification of ALK as a major familial neuroblastoma predisposition gene. Nature 455(7215):930–935PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Ross RA, Biedler JL, Spengler BA (2003) A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett 197(1–2):35–39PubMedCrossRefGoogle Scholar
  15. 15.
    Gu H, Neel BG (2003) The “Gab” in signal transduction. Trends Cell Biol 13(3):122–130PubMedCrossRefGoogle Scholar
  16. 16.
    Mackay H, Hedley D, Major P, Townsley C, Mackenzie M, Vincent M, Degendorfer P, Tsao MS, Nicklee T, Birle D, Wright J, Siu L, Moore M, Oza A (2005) A phase II trial with pharmacodynamic endpoints of the proteasome inhibitor bortezomib in patients with metastatic colorectal cancer. Clin Cancer Res 11(15):5526–5533PubMedCrossRefGoogle Scholar
  17. 17.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342PubMedCrossRefGoogle Scholar
  18. 18.
    Uddin S, Ahmed M, Bavi P, El-Sayed R, Al-Sanea N, AbdulJabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Hussain AR, Al-Kuraya KS (2008) Bortezomib (Velcade) induces p27Kip1 expression through S-phase kinase protein 2 degradation in colorectal cancer. Cancer Res 68(9):3379–3388PubMedCrossRefGoogle Scholar
  19. 19.
    Chen D, Frezza M, Schmitt S, Kanwar J, Dou QP (2011) Bortezomib as the first proteasome inhibitor anticancer drug: current status and future perspectives. Curr Cancer Drug Targets 11(3):239–253PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Wright JJ (2010) Combination therapy of bortezomib with novel targeted agents: an emerging treatment strategy. Clin Cancer Res 16(16):4094–4104PubMedCrossRefGoogle Scholar
  21. 21.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8(9):741–752PubMedCrossRefGoogle Scholar
  22. 22.
    Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518PubMedCrossRefGoogle Scholar
  23. 23.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115(10):2679–2688PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Mihaylova MM, Shaw RJ (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol 13(9):1016–1023PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785PubMedCrossRefGoogle Scholar
  27. 27.
    Zheng QY, Jin FS, Yao C, Zhang T, Zhang GH, Ai X (2012) Ursolic acid-induced AMP-activated protein kinase (AMPK) activation contributes to growth inhibition and apoptosis in human bladder cancer T24 cells. Biochem Biophys Res CommunGoogle Scholar
  28. 28.
    Wang S, Song P, Zou MH (2012) AMP-activated protein kinase, stress responses and cardiovascular diseases. Clin Sci (Lond) 122(12):555–573CrossRefGoogle Scholar
  29. 29.
    Liu YQ, Cheng X, Guo LX, Mao C, Chen YJ, Liu HX, Xiao QC, Jiang S, Yao ZJ, Zhou GB (2012) Identification of an annonaceous acetogenin mimetic, AA005, as an AMPK activator and autophagy inducer in colon cancer cells. PLoS ONE 7(10):e47049PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Jeon SM, Chandel NS, Hay N (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485(7400):661–665PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K (2003) A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8(1):65–79PubMedCrossRefGoogle Scholar
  33. 33.
    Luo Z, Saha AK, Xiang X, Ruderman NB (2005) AMPK, the metabolic syndrome and cancer. Trends Pharmacol Sci 26(2):69–76PubMedCrossRefGoogle Scholar
  34. 34.
    Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331(6016):456–461PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Krausova M, Korinek V (2014) Wnt signaling in adult intestinal stem cells and cancer. Cell Signal 26(3):570–579PubMedCrossRefGoogle Scholar
  36. 36.
    Chan DW, Chen BP, Prithivirajsingh S, Kurimasa A, Story MD, Qin J, Chen DJ (2002) Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16(18):2333–2338PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383(1–2):13–20PubMedCrossRefGoogle Scholar
  38. 38.
    Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25(2):254–264PubMedCrossRefGoogle Scholar
  39. 39.
    Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402(6762):672–676PubMedCrossRefGoogle Scholar
  40. 40.
    Scarlatti F, Maffei R, Beau I, Codogno P, Ghidoni R (2008) Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells. Cell Death Differ 15(8):1318–1329PubMedCrossRefGoogle Scholar
  41. 41.
    Koyama-Nasu R, Haruta R, Nasu-Nishimura Y, Taniue K, Katou Y, Shirahige K, Todo T, Ino Y, Mukasa A, Saito N, Matsui M, Takahashi R, Hoshino-Okubo A, Sugano H, Manabe E, Funato K, Akiyama T (2013) The pleiotrophin-ALK axis is required for tumorigenicity of glioblastoma stem cells. OncogeneGoogle Scholar
  42. 42.
    Li C, Johnson DE (2012) Bortezomib induces autophagy in head and neck squamous cell carcinoma cells via JNK activation. Cancer Lett 314(1):102–107PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Granato M, Santarelli R, Lotti LV, Di Renzo L, Gonnella R, Garufi A, Trivedi P, Frati L, D’Orazi G, Faggioni A, Cirone M (2013) JNK and macroautophagy activation by bortezomib has a pro-survival effect in primary effusion lymphoma cells. PLoS ONE 8(9):e75965PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Rosenfeldt MT, Ryan KM (2011) The multiple roles of autophagy in cancer. Carcinogenesis 32(7):955–963PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23(16):2891–2906PubMedCrossRefGoogle Scholar
  46. 46.
    Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, Caughey DJ, Wen D, Karavanov A, Riegel AT, Wellstein A (2001) Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 276(20):16772–16779PubMedCrossRefGoogle Scholar
  47. 47.
    George RE, Sanda T, Hanna M, Frohling S, Luther W 2nd, Zhang J, Ahn Y, Zhou W, London WB, McGrady P, Xue L, Zozulya S, Gregor VE, Webb TR, Gray NS, Gilliland DG, Diller L, Greulich H, Morris SW, Meyerson M, Look AT (2008) Activating mutations in ALK provide a therapeutic target in neuroblastoma. Nature 455(7215):975–978PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Yart A, Mayeux P, Raynal P (2003) Gab1, SHP-2 and other novel regulators of Ras: targets for anticancer drug discovery? Curr Cancer Drug Targets 3(3):177–192PubMedCrossRefGoogle Scholar
  49. 49.
    Fan YX, Wong L, Marino MP, Ou W, Shen Y, Wu WJ, Wong KK, Reiser J, Johnson GR (2013) Acquired substrate preference for GAB1 protein bestows transforming activity to ERBB2 kinase lung cancer mutants. J Biol Chem 288(23):16895–16904PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Janoueix-Lerosey I, Lequin D, Brugieres L, Ribeiro A, de Pontual L, Combaret V, Raynal V, Puisieux A, Schleiermacher G, Pierron G, Valteau-Couanet D, Frebourg T, Michon J, Lyonnet S, Amiel J, Delattre O (2008) Somatic and germline activating mutations of the ALK kinase receptor in neuroblastoma. Nature 455(7215):967–970PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of GastroenterologyDrum Tower Clinical Medical College of Nanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of GastroenterologyNanjing Medical University Affiliated Suzhou HospitalSuzhouPeople’s Republic of China
  3. 3.Department of GI MedicineWuxi People’s HospitalWuxiPeople’s Republic of China
  4. 4.Tumor LabNanjing Medical University Affiliated Suzhou HospitalSuzhouPeople’s Republic of China

Personalised recommendations