Cancer Chemotherapy and Pharmacology

, Volume 73, Issue 4, pp 685–693 | Cite as

Elimination of EGFR-expressing circulating tumor cells in patients with metastatic breast cancer treated with gefitinib

  • Antonia Kalykaki
  • Sofia Agelaki
  • Galatea Kallergi
  • Alexandros Xyrafas
  • Dimitris Mavroudis
  • Vassilis Georgoulias
Original Article

Abstract

Purpose

The purpose of the study is to evaluate the effect of gefitinib, an anti-EGFR TKI on circulating tumor cells (CTCs) in patients with metastatic breast cancer (MBC).

Methods

Seventeen patients with MBC with detectable CTCs after the completion of prior treatment received gefitinib 250 mg/day p.o. CTCs were monitored by immunofluorescence microscopy after double staining with anti-cytokeratin (A45-B/B3) and either anti-CD45 or anti-EGFR antibodies.

Results

A median reduction of 96.4 and 94.1 % in CTC count was observed in 11 (64.7 %) and 12 (70.6 %) of patients after the first and the second treatment cycles, respectively. Total CTC numbers declined by 73 and 44 % after the first and second treatment cycles, respectively. In nine patients with EGFR(+)/CK(+) CTCs, gefitinib resulted in a reduction of both EGFR(+) and EGFR(−) CTCs, and after the third course, most detected CTCs were EGFR(−). In two patients, with a sustained decrease in CTC numbers, a PFS of 16.0 and 19.0 months was observed and in one of them, it was associated with clinical objective response.

Conclusion

Treatment-resistant CTCs could be eliminated by gefitinib in MBC, and EGFR expression on CTCs merits further validation as a potential biomarker for specific and effective targeting of CTCs.

Keywords

Circulating tumor cells Gefitinib Breast cancer EGFR Tyrosine kinase inhibitors 

Notes

Acknowledgments

This work was supported by a grant from Astra Zeneca (UK) and from the Cretan Association for Biomedical Research (CABR).

Disclosure

There is no conflict of interest.

References

  1. 1.
    Lambrechts AC, van ‘t Veer LJ, Rodenhuis S (1998) The detection of minimal numbers of contaminating epithelial tumor cells in blood or bone marrow: use, limitations and future of RNA-based methods. Ann Oncol 9(12):1269–1276PubMedCrossRefGoogle Scholar
  2. 2.
    Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91(13):1113–1124PubMedCrossRefGoogle Scholar
  3. 3.
    Daskalaki A, Agelaki S, Perraki M, Apostolaki S, Xenidis N, Stathopoulos E, Kontopodis E, Hatzidaki D, Mavroudis D, Georgoulias V (2009) Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br J Cancer 101(4):589–597PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Cote RJ, Rosen PP, Lesser ML, Old LJ, Osborne MP (1991) Prediction of early relapse in patients with operable breast cancer by detection of occult bone marrow micrometastases. J Clin Oncol 9(10):1749–1756PubMedGoogle Scholar
  5. 5.
    Braun S, Pantel K, Muller P, Janni W, Hepp F, Kentenich CR, Gastroph S, Wischnik A, Dimpfl T, Kindermann G, Riethmuller G, Schlimok G (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. New Engl J Med 342(8):525–533PubMedCrossRefGoogle Scholar
  6. 6.
    Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Bastert G (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: prognostic value in comparison with nodal status. J Natl Cancer Inst 88(22):1652–1658PubMedCrossRefGoogle Scholar
  7. 7.
    Mansi JL, Easton D, Berger U, Gazet JC, Ford HT, Dearnaley D, Coombes RC (1991) Bone marrow micrometastases in primary breast cancer: prognostic significance after 6 years’ follow-up. Eur J Cancer 27(12):1552–1555PubMedCrossRefGoogle Scholar
  8. 8.
    Bidard FC, Vincent-Salomon A, Sigal-Zafrani B, Dieras V, Mathiot C, Mignot L, Thiery JP, Sastre-Garau X, Pierga JY (2008) Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol 19(3):496–500PubMedCrossRefGoogle Scholar
  9. 9.
    Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, Doyle GV, Matera J, Allard WJ, Miller MC, Fritsche HA, Hortobagyi GN, Terstappen LW (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 23(7):1420–1430PubMedCrossRefGoogle Scholar
  10. 10.
    Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, Janni W, Coith C, Beck K, Janicke F, Jackson S, Gornet T, Cristofanilli M, Pantel K (2007) Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the cell search system. Clin Cancer Res 13(3):920–928PubMedCrossRefGoogle Scholar
  11. 11.
    Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, Reuben JM, Doyle GV, Allard WJ, Terstappen LW, Hayes DF (2004) Circulating tumor cells, disease progression, and survival in metastatic breast cancer. New Engl J Med 351(8):781–791PubMedCrossRefGoogle Scholar
  12. 12.
    Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, Matera J, Allard WJ, Doyle GV, Terstappen LW (2006) Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 12(14 Pt 1):4218–4224PubMedCrossRefGoogle Scholar
  13. 13.
    Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, Jackson S, Hortobagyi GN, Fritsche H, Cristofanilli M (2008) Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system? Cancer 113(9):2422–2430PubMedCrossRefGoogle Scholar
  14. 14.
    Nole F, Munzone E, Zorzino L, Minchella I, Salvatici M, Botteri E, Medici M, Verri E, Adamoli L, Rotmensz N, Goldhirsch A, Sandri MT (2008) Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 19(5):891–897PubMedCrossRefGoogle Scholar
  15. 15.
    Botteri E, Sandri MT, Bagnardi V, Munzone E, Zorzino L, Rotmensz N, Casadio C, Cassatella MC, Esposito A, Curigliano G, Salvatici M, Verri E, Adamoli L, Goldhirsch A, Nole F (2010) Modelling the relationship between circulating tumour cells number and prognosis of metastatic breast cancer. Breast Cancer Res Treat 122(1):211–217PubMedCrossRefGoogle Scholar
  16. 16.
    Liu MC, Shields PG, Warren RD, Cohen P, Wilkinson M, Ottaviano YL, Rao SB, Eng-Wong J, Seillier-Moiseiwitsch F, Noone AM, Isaacs C (2009) Circulating tumor cells: a useful predictor of treatment efficacy in metastatic breast cancer. J Clin Oncol 27(31):5153–5159PubMedCrossRefGoogle Scholar
  17. 17.
    Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signalling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, Elledge RM (2005) Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst 97(17):1254–1261PubMedCrossRefGoogle Scholar
  19. 19.
    Rimawi MF, Shetty PB, Weiss HL, Schiff R, Osborne CK, Chamness GC, Elledge RM (2010) Epidermal growth factor receptor expression in breast cancer association with biologic phenotype and clinical outcomes. Cancer 116(5):1234–1242PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gutteridge E, Agrawal A, Nicholson R, Leung Cheung K, Robertson J, Gee J (2010) The effects of gefitinib in tamoxifen-resistant and hormone-insensitive breast cancer: a phase II study. Int J Cancer 126(8):1806–1816PubMedGoogle Scholar
  21. 21.
    Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT (2012) Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 136(2):331–345PubMedCrossRefGoogle Scholar
  22. 22.
    Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, Tortora G (2001) Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7(5):1459–1465PubMedGoogle Scholar
  23. 23.
    Ciardiello F, Caputo R, Bianco R, Damiano V, Pomatico G, De Placido S, Bianco AR, Tortora G (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6(5):2053–2063PubMedGoogle Scholar
  24. 24.
    Ciardiello F, Caputo R, Borriello G, Del Bufalo D, Biroccio A, Zupi G, Bianco AR, Tortora G (2002) ZD1839 (IRESSA), an EGFR-selective tyrosine kinase inhibitor, enhances taxane activity in bcl-2 overexpressing, multidrug-resistant MCF-7 ADR human breast cancer cells. Int J Cancer 98(3):463–469PubMedCrossRefGoogle Scholar
  25. 25.
    Green MD, Francis PA, Gebski V, Harvey V, Karapetis C, Chan A, Snyder R, Fong A, Basser R, Forbes JF (2009) Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer. Ann Oncol 20(11):1813–1817PubMedCrossRefGoogle Scholar
  26. 26.
    Cristofanilli M, Valero V, Mangalik A, Royce M, Rabinowitz I, Arena FP, Kroener JF, Curcio E, Watkins C, Bacus S, Cora EM, Anderson E, Magill PJ (2010) Phase II, randomized trial to compare anastrozole combined with gefitinib or placebo in postmenopausal women with hormone receptor-positive metastatic breast cancer. Clin Cancer Res 16(6):1904–1914PubMedCrossRefGoogle Scholar
  27. 27.
    Massarweh S, Tham YL, Huang J, Sexton K, Weiss H, Tsimelzon A, Beyer A, Rimawi M, Cai WY, Hilsenbeck S, Fuqua S, Elledge R (2011) A phase II neoadjuvant trial of anastrozole, fulvestrant, and gefitinib in patients with newly diagnosed estrogen receptor positive breast cancer. Breast Cancer Res Treat 129(3):819–827PubMedCrossRefGoogle Scholar
  28. 28.
    Kallergi G, Agelaki S, Kalykaki A, Stournaras C, Mavroudis D, Georgoulias V (2008) Phosphorylated EGFR and PI3 K/Akt signaling kinases are expressed in circulating tumor cells of breast cancer patients. Breast Cancer Res 10(5):R80PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Xenidis N, Vlachonikolis I, Mavroudis D, Perraki M, Stathopoulou A, Malamos N, Kouroussis C, Kakolyris S, Apostolaki S, Vardakis N, Lianidou E, Georgoulias V (2003) Peripheral blood circulating cytokeratin-19 mRNA-positive cells after the completion of adjuvant chemotherapy in patients with operable breast cancer. Ann Oncol 14(6):849–855PubMedCrossRefGoogle Scholar
  30. 30.
    Xenidis N, Markos V, Apostolaki S, Perraki M, Pallis A, Sfakiotaki G, Papadatos-Pastos D, Kalmanti L, Kafousi M, Stathopoulos E, Kakolyris S, Mavroudis D, Georgoulias V (2007) Clinical relevance of circulating CK-19 mRNA-positive cells detected during the adjuvant tamoxifen treatment in patients with early breast cancer. Ann Oncol 18(10):1623–1631PubMedCrossRefGoogle Scholar
  31. 31.
    Stathopoulou A, Gizi A, Perraki M, Apostolaki S, Malamos N, Mavroudis D, Georgoulias V, Lianidou ES (2003) Real-time quantification of CK-19 mRNA-positive cells in peripheral blood of breast cancer patients using the lightcycler system. Clin Cancer Res 9(14):5145–5151PubMedGoogle Scholar
  32. 32.
    Xenidis N, Perraki M, Kafousi M, Apostolaki S, Bolonaki I, Stathopoulou A, Kalbakis K, Androulakis N, Kouroussis C, Pallis T, Christophylakis C, Argyraki K, Lianidou ES, Stathopoulos S, Georgoulias V, Mavroudis D (2006) Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol 24(23):3756–3762PubMedCrossRefGoogle Scholar
  33. 33.
    Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF, Beitsch PD, Leitch M, Hoover S, Euhus D, Haley B, Morrison L, Fleming TP, Herlyn D, Terstappen LW, Fehm T, Tucker TF, Lane N, Wang J, Uhr JW (2004) Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 10(24):8152–8162PubMedCrossRefGoogle Scholar
  34. 34.
    Moasser MM, Basso A, Averbuch SD, Rosen N (2001) The tyrosine kinase inhibitor ZD1839 (“Iressa”) inhibits HER2-driven signalling and suppresses the growth of HER2-overexpressing tumor cells. Cancer Res 61(19):7184–7188PubMedGoogle Scholar
  35. 35.
    Campiglio M, Locatelli A, Olgiati C, Normanno N, Somenzi G, Vigano L, Fumagalli M, Menard S, Gianni L (2004) Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level. J Cell Physiol 198(2):259–268PubMedCrossRefGoogle Scholar
  36. 36.
    Moulder SL, Yakes FM, Muthuswamy SK, Bianco R, Simpson JF, Arteaga CL (2001) Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res 61(24):8887–8895PubMedGoogle Scholar
  37. 37.
    Bozionellou V, Mavroudis D, Perraki M, Papadopoulos S, Apostolaki S, Stathopoulos E, Stathopoulou A, Lianidou E, Georgoulias V (2004) Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 10(24):8185–8194PubMedCrossRefGoogle Scholar
  38. 38.
    Georgoulias V, Bozionelou V, Agelaki S, Perraki M, Apostolaki S, Kallergi G, Kalbakis K, Xyrafas A, Mavroudis D (2012) Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann Oncol 23(7):1744–1750PubMedCrossRefGoogle Scholar
  39. 39.
    Pestrin M, Bessi S, Puglisi F, Minisini AM, Masci G, Battelli N, Ravaioli A, Gianni L, Di Marsico R, Tondini C, Gori S, Coombes CR, Stebbing J, Biganzoli L, Buyse M, Di Leo A (2012) Final results of a multicenter phase II clinical trial evaluating the activity of single-agent lapatinib in patients with HER2-negative metastatic breast cancer and HER2-positive circulating tumor cells. A proof-of-concept study. Breast Cancer Res Treat 134(1):283–289PubMedCrossRefGoogle Scholar
  40. 40.
    Stebbing J, Payne R, Reise J, Frampton AE, Avery M, Woodley L, Di Leo A, Pestrin M, Krell J, Coombes RC (2013) The efficacy of lapatinib in metastatic breast cancer with HER2 non-amplified primary tumors and EGFR positive circulating tumor cells: a proof-of-concept study. PLoS One 8(5):e62543PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Antonia Kalykaki
    • 1
  • Sofia Agelaki
    • 1
    • 2
  • Galatea Kallergi
    • 2
  • Alexandros Xyrafas
    • 1
  • Dimitris Mavroudis
    • 1
    • 2
  • Vassilis Georgoulias
    • 1
    • 2
  1. 1.Department of Medical OncologyUniversity General Hospital of HeraklionHeraklion, CreteGreece
  2. 2.School of Medicine, Laboratory of Τumor Cell BiologyUniversity of CreteHeraklion, CreteGreece

Personalised recommendations