Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 73, Issue 3, pp 539–549 | Cite as

Phase I dose-escalation study of AZD7762, a checkpoint kinase inhibitor, in combination with gemcitabine in US patients with advanced solid tumors

  • Edward SausvilleEmail author
  • Patricia LoRusso
  • Michael Carducci
  • Judith Carter
  • Mary F. Quinn
  • Lisa Malburg
  • Nilofer Azad
  • David Cosgrove
  • Richard Knight
  • Peter Barker
  • Sonya Zabludoff
  • Felix Agbo
  • Patricia Oakes
  • Adrian Senderowicz
Original Article

Abstract

Purpose

AZD7762 is a Chk1 kinase inhibitor which increases sensitivity to DNA-damaging agents, including gemcitabine. We evaluated the safety of AZD7762 monotherapy and with gemcitabine in advanced solid tumor patients.

Experimental design

In this Phase I study, patients received intravenous AZD7762 on days 1 and 8 of a 14-day run-in cycle (cycle 0; AZD7762 monotherapy), followed by AZD7762 plus gemcitabine 750–1,000 mg/m2 on days 1 and 8, every 21 days, in ascending AZD7762 doses (cycle 1; combination therapy).

Results

Forty-two patients received AZD7762 6 mg (n = 9), 9 mg (n = 3), 14 mg (n = 6), 21 mg (n = 3), 30 mg (n = 7), 32 mg (n = 6), and 40 mg (n = 8), in combination with gemcitabine. Common adverse events (AEs) were fatigue [41 % (17/42) patients], neutropenia/leukopenia [36 % (15/42) patients], anemia/Hb decrease [29 % (12/42) patients] and nausea, pyrexia and alanine aminotransferase/aspartate aminotransferase increase [26 % (11/42) patients each]. Grade ≥3 AEs occurred in 19 and 52 % of patients in cycles 0 and 1, respectively. Cardiac dose-limiting toxicities occurred in two patients (both AZD7762 monotherapy): grade 3 troponin I increase (32 mg) and grade 3 myocardial ischemia with chest pain, electrocardiogram changes, decreased left ventricular ejection fraction, and increased troponin I (40 mg). AZD7762 exposure increased linearly. Gemcitabine did not affect AZD7762 pharmacokinetics. Two non-small-cell lung cancer patients achieved partial tumor responses (AZD7762 6 mg/gemcitabine 750 mg/m2 and AZD7762 9 mg cohort).

Conclusions

The maximum-tolerated dose of AZD7762 in combination with gemcitabine 1,000 mg/m2 was 30 mg. Although development of AZD7762 is not going forward owing to unpredictable cardiac toxicity, Chk1 remains an important therapeutic target.

Keywords

AZD7762 Chk1 Solid tumors Phase I Safety Pharmacokinetics 

Notes

Acknowledgments

We would like to thank Judith Ochs, Louise Grochow (both of Astrazeneca, US) and Victor Sandor (Incyte Corporation, US) for their assistance in protocol design and initiation of the study. We are also grateful to The General Clinical Research Center, University of Maryland, US. We thank Zoë van Helmond, PhD from Mudskipper Business Ltd, for medical writing support funded by AstraZeneca.

Conflict of interest

P. LoRusso, M. Carducci and E. Sausville have received research funding and attended advisory boards for AstraZeneca. P. Oakes, A. Senderowicz, P. Barker, S. Zabludoff, R. Knight and F. Agbo are all employees of and own stock in AstraZeneca. All other authors have no conflicts of interest to declare.

References

  1. 1.
    Weinert TA, Hartwell LH (1988) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317–322PubMedCrossRefGoogle Scholar
  2. 2.
    Hartwell LH, Weinert TA (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634PubMedCrossRefGoogle Scholar
  3. 3.
    Wahl GM, Linke SP, Paulson TG, Huang LC (1997) Maintaining genetic stability through TP53 mediated checkpoint control. Cancer Surv 29:183–219PubMedGoogle Scholar
  4. 4.
    Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196PubMedCrossRefGoogle Scholar
  5. 5.
    Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359PubMedCrossRefGoogle Scholar
  6. 6.
    Lau CC, Pardee AB (1982) Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc Natl Acad Sci USA 79:2942–2946PubMedCrossRefGoogle Scholar
  7. 7.
    Sausville EA, Johnson J, Alley M, Zaharevitz D, Senderowicz AM (2000) Inhibition of CDKs as a therapeutic modality. Ann N Y Acad Sci 910:207–221PubMedCrossRefGoogle Scholar
  8. 8.
    Shapiro GI, Harper JW (1999) Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 104:1645–1653PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wang Q, Worland PJ, Clark JL, Carlson BA, Sausville EA (1995) Apoptosis in 7-hydroxystaurosporine-treated T lymphoblasts correlates with activation of cyclin-dependent kinases 1 and 2. Cell Growth Differ 6:927–936PubMedGoogle Scholar
  10. 10.
    Graves PR, Yu L, Schwarz JK, Gales J, Sausville EA, O’Connor PM, Piwnica-Worms H (2000) The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01. J Biol Chem 275:5600–5605PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao B, Bower MJ, McDevitt PJ, Zhao H, Davis ST, Johanson KO, Green SM, Concha NO, Zhou BB (2002) Structural basis for Chk1 inhibition by UCN-01. J Biol Chem 277:46609–46615PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Q, Fan S, Eastman A, Worland PJ, Sausville EA, O’Connor PM (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88:956–965PubMedCrossRefGoogle Scholar
  13. 13.
    Fuse E, Tanii H, Kurata N, Kobayashi H, Shimada Y, Tamura T, Sasaki Y, Tanigawara Y, Lush RD, Headlee D, Figg WD, Arbuck SG, Senderowicz AM, Sausville EA, Akinaga S, Kuwabara T, Kobayashi S (1998) Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein. Cancer Res 58:3248–3253PubMedGoogle Scholar
  14. 14.
    Sausville EA, Arbuck SG, Messmann R, Headlee D, Bauer KS, Lush RM, Murgo A, Figg WD, Lahusen T, Jaken S, Jing X, Roberge M, Fuse E, Kuwabara T, Senderowicz AM (2001) Phase I trial of 72-hour continuous infusion UCN-01 in patients with refractory neoplasms. J Clin Oncol 19:2319–2333PubMedGoogle Scholar
  15. 15.
    Sato S, Fujita N, Tsuruo T (2002) Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 21:1727–1738PubMedCrossRefGoogle Scholar
  16. 16.
    Zabludoff SD, Deng C, Grondine MR, Sheehy AM, Ashwell S, Caleb BL, Green S, Haye HR, Horn CL, Janetka JW, Liu D, Mouchet E, Ready S, Rosenthal JL, Queva C, Schwartz GK, Taylor KJ, Tse AN, Walker GE, White AM (2008) AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Mol Cancer Ther 7:2955–2966PubMedCrossRefGoogle Scholar
  17. 17.
    Mitchell JB, Choudhuri R, Fabre K, Sowers AL, Citrin D, Zabludoff Z, Cook JA (2010) In vitro and in vivo radiation sensitization of human tumor cells by a novel checkpoint kinase inhibitor, AZD7762. Clin Cancer Res 16:2076–2084PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
  19. 19.
    Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. Lippincott, Williams and Wilkins, Philadelphia, USAGoogle Scholar
  20. 20.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  21. 21.
    Morgan MA, Parsels LA, Zhao L, Parsels JD, Davis MA, Hassan MC, Arumugarajah S, Hylander-Gans L, Morosini D, Simeone DM, Canman CE, Normolle DP, Zabludoff SD, Maybaum J, Lawrence TS (2010) Mechanism of radiosensitization by the Chk1/2 inhibitor AZD7762 involves abrogation of the G2 checkpoint and inhibition of homologous recombinational DNA repair. Cancer Res 70:4972–4981PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Ho AL, Bendell JC, Cleary JM, Schwartz GK, Burris HA, Oakes P, Agbo F, Barker PN, Senderowicz AM, Shapiro G (2011) Phase I, open-label, dose–escalation study of AZD7762 in combination with irinotecan (irino) in patients (pts) with advanced solid tumors. J Clin Oncol 29(15S):abst 3033Google Scholar
  23. 23.
    Seto T, Esaki T, Hirai T, Arita S, Nosaki K, Makiyama A, Kometani T, Fujimoto C, Hamatake M, Takeoka H, Agbo F, Shi X (2013) Phase I, dose–escalation study of AZD7762 alone and in combination with gemcitabine in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 72:619–627PubMedCrossRefGoogle Scholar
  24. 24.
    Takai H, Tominaga K, Motoyama N, Minamishima YA, Nagahama H, Tsukiyama T, Ikeda K, Nakayama K, Nakanishi M, Nakayama K (2000) Aberrant cell cycle checkpoint function and early embryonic death in Chk1(-/-) mice. Genes Dev 14:1439–1447PubMedGoogle Scholar
  25. 25.
    Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: sensing redox states. Physiol Rev 91:889–915PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Doganli C, Kjaer-Sorensen K, Knoeckel C, Beck HC, Nyengaard JR, Honore B, Nissen P, Ribera A, Oxvig C, Lykke-Hartmann K (2012) The alpha 2Na+/K+-ATPase is critical for skeletal and heart muscle function in zebrafish. J Cell Sci 125:6166–6175PubMedCrossRefGoogle Scholar
  27. 27.
    Karp JE, Thomas BM, Greer JM, Sorge C, Gore SD, Pratz KW, Smith BD, Flatten K, Peterson KL, Schneider P, Mackey K, Freshwater T, Levis M, McDevitt M, Carraway HE, Gladstone DE, Showel MM, Loechner S, Parry DA, Horowitz JA, Issacs R, Kaufmann SH (2012) Phase I and pharmacologic trial of cytosine arabinoside with the selective checkpoint 1 inhibitor SCH 900776 in refractory acute leukemias. Clin Cancer Res 18:6723–6731PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Depamphilis ML, de Renty CM, Ullah Z, Lee CY (2012) “The Octet”: eight protein kinases that control mammalian DNA replication. Front Physiol 3:368PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Edward Sausville
    • 1
    Email author
  • Patricia LoRusso
    • 2
  • Michael Carducci
    • 3
  • Judith Carter
    • 1
  • Mary F. Quinn
    • 1
  • Lisa Malburg
    • 2
  • Nilofer Azad
    • 3
  • David Cosgrove
    • 3
  • Richard Knight
    • 4
  • Peter Barker
    • 4
  • Sonya Zabludoff
    • 4
  • Felix Agbo
    • 4
  • Patricia Oakes
    • 4
  • Adrian Senderowicz
    • 4
  1. 1.Marlene and Stewart Greenebaum Cancer CenterUniversity of MarylandBaltimoreUSA
  2. 2.Karmanos Cancer CenterWayne State University School of MedicineDetroitUSA
  3. 3.Sidney Kimmel Comprehensive Cancer CenterJohns Hopkins Medical InstitutionsBaltimoreUSA
  4. 4.AstraZenecaWilmingtonUSA

Personalised recommendations