Cancer Chemotherapy and Pharmacology

, Volume 72, Issue 5, pp 1001–1011 | Cite as

Knockdown of cyclophilin A reverses paclitaxel resistance in human endometrial cancer cells via suppression of MAPK kinase pathways

  • Zhengyu Li
  • Wenjiao Min
  • Jinhai Gou
Original Article



Paclitaxel resistance remains to be a major obstacle to the chemotherapy of endometrial cancer. Using proteomic-based approach, we used to identify cyclophilin A (CypA) as a potential therapeutic target for endometrial cancer. As a natural continuation, this study aimed to reveal the correlation between CypA and paclitaxel resistance and evaluate the possibility of CypA as a therapeutic target for reversal of resistance.


Two paclitaxel-resistant endometrial cancer cell sublines HEC-1-B/TAX and AN3CA/TAX were generated, and expressions of CypA, P-gp, MRP-2 and survivin were demonstrated by Western blotting. CypA was knocked down by RNA interference, and the subsequent effects on the alteration of paclitaxel resistance were examined by MTT, flow cytometry and migratory/invasive transwell assays. MAPK kinases activities were examined by Western blotting.


CypA knockdown led to significant inhibition of cell proliferation, induction of apoptosis and suppression of migratory/invasive capacity in HEC-1-B/TAX and AN3CA/TAX cells when exposed to paclitaxel. CypA knockdown led to reductions in total and phosphorylated MAPK kinases, including Akt, ERK1/2, p38 MAPK and JNK, in HEC-1-B/TAX cells. Furthermore, pretreatment with MAPK kinase inhibitors exhibited a synergistic effect in combination with CypA knockdown.


These results demonstrated that CypA expression was up-regulated in paclitaxel-resistant cancer cells, and knockdown of CypA could reverse the paclitaxel resistance through, at least partly, suppression of MAPK kinase pathways, presenting a possibility of CypA serving as a therapeutic target to overcome paclitaxel resistance.


Endometrial cancer Paclitaxel resistance Cyclophilin A MAPK kinase RNA interference 



This research was supported by Natural Science Foundation of China (Grant Numbers: 30901594 and 81170592) and Special Fund from National Excellent Doctoral Dissertation (Grant Number: 201079).

Conflict of interest



  1. 1.
    Jordan MA, Toso RJ, Thrower D, Wilson L (1993) Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations. Proc Natl Acad Sci USA 90:9552–9556PubMedCrossRefGoogle Scholar
  2. 2.
    Hill EK, Dizon DS (2012) Medical therapy of endometrial cancer: current status and promising novel treatments. Drugs 72(5):705–713PubMedCrossRefGoogle Scholar
  3. 3.
    Murray S, Briasoulis E, Linardou H, Bafaloukos D, Papadimitriou C (2012) Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat Rev 38(7):890–903PubMedCrossRefGoogle Scholar
  4. 4.
    Kavallaris M, Kuo DYS, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J Clin Invest 100:1282–1293PubMedCrossRefGoogle Scholar
  5. 5.
    Li Z, Zhao X, Bai SN, Wang Z, Chen L, Wei Y, Huang C (2008) Proteomic identification of cyclophilin A as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics 7:1810–1823PubMedCrossRefGoogle Scholar
  6. 6.
    Obchoei S, Wongkhan S, Wongkham C, Li M, Yao Q, Chen C (2009) Cyclophilin A: potential functions and therapeutic target for human cancer. Med Sci Monit 15(11):RA221–32Google Scholar
  7. 7.
    Choi KJ, Piao YJ, Lim MY, Kim JH, Ha J, Choe W, Kim SS (2007) Overexpressed cyclophilin A in cancer cells renders resistance to hypoxia- and cisplatin-induced cell death. Cancer Res 67:3654–3662PubMedCrossRefGoogle Scholar
  8. 8.
    Chen S, Zhang M, Ma H, Saiyin H, Shen S, Xi J, Wan B, Yu L (2008) Oligo-microarray analysis reveals the role of cyclophilin A in drug resistance. Cancer Chemother Pharmacol 61:459–469PubMedCrossRefGoogle Scholar
  9. 9.
    Dumontet C, Duran GE, Steger KA, Beketic-Oreskovic L, Sikic BI (1996) Resistance mechanisms in human sarcoma mutants derived by single-step exposure to paclitaxel (Taxol). Cancer Res 56(5):1091–1097PubMedGoogle Scholar
  10. 10.
    Pusztai L, Wagner P, Ibrahim N, Rivera E, Theriault R, Booser D, Symmans FW, Wong F, Blumenschein G, Fleming DR, Rouzier R, Boniface G et al (2005) Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer 104(4):682–691PubMedCrossRefGoogle Scholar
  11. 11.
    Rago RP, Einstein A Jr, Lush R, Beer TM, Ko YJ, Henner WD, Bubley G, Merica EA, Garg V, Ette E, Harding MW, Dalton WS (2003) Safety and efficacy of the MDR inhibitor Incel (biricodar, VX-710) in combination with mitoxantrone and prednisone in hormone-refractory prostate cancer. Cancer Chemother Pharmacol 51(4):297–305PubMedGoogle Scholar
  12. 12.
    Gruber A, Björkholm M, Brinch L, Evensen S, Gustavsson B, Hedenus M, Juliusson G, Lofvenberg E, Nesthus I, Simonsson B, Sjo M, Stenke L et al (2003) A phase I/II study of the MDR modulator Valspodar (PSC 833) combined with daunorubicin and cytarabine in patients with relapsed and primary refractory acute myeloid leukemia. Leuk Res 27(4):323–328PubMedCrossRefGoogle Scholar
  13. 13.
    Seiden MV, Swenerton KD, Matulonis U, Campos S, Rose P, Batist G, Ette E, Garg V, Fuller A, Harding MW, Charpentier D (2002) A phase II study of the MDR inhibitor biricodar (INCEL, VX-710) and paclitaxel in women with advanced ovarian cancer refractory to paclitaxel therapy. Gynecol Oncol 86(3):302–310PubMedCrossRefGoogle Scholar
  14. 14.
    O’Brien MM, Lacayo NJ, Lum BL, Kshirsagar S, Buck S, Ravindranath Y, Bernstein M, Weinstein MN, Arceci RJ, Sikic BI, Dahl GV (2010) Phase I study of valspodar (PSC-833) with mitoxantrone and etoposide in refractory and relapsed pediatric acute leukemia: a report from the children’s oncology group. Pediatr Blood Cancer 54(5):694–702PubMedCrossRefGoogle Scholar
  15. 15.
    Risinger AL, Jackson EM, Polin LA, Helms GL, LeBoeuf DA, Joe PA, Hopper-Borge E, Luduena RF, Kruh GD, Mooberry SL (2008) The taccalonolides: microtubule stabilizers that circumvent clinically relevant taxane resistance mechanisms. Cancer Res 68(21):8881–8888PubMedCrossRefGoogle Scholar
  16. 16.
    Bhattacharya R, Cabral F (2009) Molecular basis for class V β-tubulin effects on microtubule assembly and paclitaxel resistance. J Biol Chem 284(19):13023–13032PubMedCrossRefGoogle Scholar
  17. 17.
    Yin S, Bhattacharya R, Cabral F (2010) Human mutations that confer paclitaxel resistance. Mol Cancer Ther 9(2):327–335PubMedCrossRefGoogle Scholar
  18. 18.
    Natarajan K, Senapati S (2012) Understanding the basis of drug resistance of the mutants of αβ-tubulin dimer via molecular dynamics simulations. PLoS ONE 7(8):e42351PubMedCrossRefGoogle Scholar
  19. 19.
    Kavallaris M, Kuo DY, Burkhart CA, Regl DL, Norris MD, Haber M, Horwitz SB (1997) Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J Clin Invest 100(5):1282–1293PubMedCrossRefGoogle Scholar
  20. 20.
    Hasegawa S, Miyoshi Y, Egawa C, Ishitobi M, Taguchi T, Tamaki Y, Monden M, Noguchi S (2003) Prediction of response to docetaxel by quantitative analysis of class I and III β-tubulin isotype mRNA expression in human breast cancers. Clin Cancer Res 9(8):2992–2997PubMedGoogle Scholar
  21. 21.
    Ferlini C, Raspaglio G, Mozzetti S, Cicchillitti L, Filippetti F, Gallo D, Fattorusso C, Campiani G, Scambia G (2005) The seco-taxane IDN5390 is able to target class III β-tubulin and to overcome paclitaxel resistance. Cancer Res 65(6):2397–2405PubMedCrossRefGoogle Scholar
  22. 22.
    Kanakkanthara A, Northcote PT, Miller JH (2012) βII-tubulin and βIII-tubulin mediate sensitivity to peloruside A and laulimalide, but not paclitaxel or vinblastine, in human ovarian carcinoma cells. Mol Cancer Ther 11(2):393–404PubMedCrossRefGoogle Scholar
  23. 23.
    Cheung CH, Wu SY, Lee TR, Chang CY, Wu JS, Hsieh HP, Chang JY (2010) Cancer cells acquire mitotic drug resistance properties through βI-tubulin mutations and alterations in the expression of β-tubulin isotypes. PLoS ONE 5(9):e12564PubMedCrossRefGoogle Scholar
  24. 24.
    Tsurutani J, Komiya T, Uejima H, Tada H, Syunichi N, Oka M, Kohno S, Fukuoka M, Nakagawa K (2002) Mutational analysis of the beta-tubulin gene in lung cancer. Lung Cancer 35(1):11–16PubMedCrossRefGoogle Scholar
  25. 25.
    Sale S, Sung R, Shen P, Yu K, Wang Y, Duran GE, Kim JH, Fojo T, Oefner PJ, Sikic BI (2002) Conservation of the class I β-tubulin gene in human populations and lack of mutations in lung cancers and paclitaxel-resistant ovarian cancers. Mol Cancer Ther 1(3):215–225PubMedGoogle Scholar
  26. 26.
    Mesquita B, Veiga I, Pereira D, Tavares A, Pinto IM, Pinto C, Teixeira MR, Castedo S (2005) No significant role for beta tubulin mutations and mismatch repair defects in ovarian cancer resistance to paclitaxel/cisplatin. BMC Cancer 5:101PubMedCrossRefGoogle Scholar
  27. 27.
    Shimomura M, Yaoi T, Itoh K, Kato D, Terauchi K, Shimada J, Fushiki S (2012) Drug resistance to paclitaxel is not only associated with ABCB1 mRNA expression but also with drug accumulation in intracellular compartments in human lung cancer cell lines. Int J Oncol 40(4):995–1004PubMedGoogle Scholar
  28. 28.
    Thiele A, Krentzlin K, Erdmann F, Rauh D, Hause G, Zerweck J, Kilka S, Posel S, Fischer G, Schutkowski M, Weiwad M (2011) Parvulin 17 promotes microtubule assembly by its peptidyl-prolyl cis/trans isomerase activity. J Mol Biol 411(4):896–909PubMedCrossRefGoogle Scholar
  29. 29.
    Lee J (2010) Role of cyclophilin a during oncogenesis. Arch Pharm Res 33(2):181–187PubMedCrossRefGoogle Scholar
  30. 30.
    González-Santiago L, Alfonso P, Suárez Y, Núñez A, García-Fernández LF, Alvarez E, Muñoz A, Casal JI (2007) Proteomic analysis of the resistance to aplidin in human cancer cells. J Proteome Res 6(4):1286–1294PubMedCrossRefGoogle Scholar
  31. 31.
    Fojo T, Menefee M (2007) Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol 18(Suppl 5):v3–v8PubMedCrossRefGoogle Scholar
  32. 32.
    Liu YH, Di YM, Zhou ZW, Mo SL, Zhou SF (2010) Multidrug resistance-associated proteins and implications in drug development. Clin Exp Pharmacol Physiol 37(1):115–120PubMedCrossRefGoogle Scholar
  33. 33.
    Kanwar JR, Kamalapuram SK, Kanwar RK (2010) Targeting survivin in cancer: patent review. Expert Opin Ther Pat 20(12):1723–1737PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang XC, Wang WD, Wang JS, Pan JC (2013) PPIase independent chaperone-like function of recombinant human cyclophilin A during arginine kinase refolding. FEBS Lett 587(6):666–672PubMedCrossRefGoogle Scholar
  35. 35.
    Yurchenko V, Zybarth G, O’Connor M, Dai WW, Franchin G, Hao T, Guo H, Hung HC, Toole B, Gallay P, Sherry B, Bukrinsky M (2002) Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem 277(25):22959–22965PubMedCrossRefGoogle Scholar
  36. 36.
    Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW (2007) Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 25(1):54–64PubMedCrossRefGoogle Scholar
  37. 37.
    Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, Chen C, Yao Q (2006) Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer 106(10):2284–2294PubMedCrossRefGoogle Scholar
  38. 38.
    Yang H, Chen J, Yang J, Qiao S, Zhao S, Yu L (2007) Cyclophilin A is upregulated in small cell lung cancer and activates ERK1/2 signal. Biochem Biophys Res Commun 361(3):763–767PubMedCrossRefGoogle Scholar
  39. 39.
    Obchoei S, Weakley SM, Wongkham S, Wongkham C, Sawanyawisuth K, Yao Q, Chen C (2011) Cyclophilin A enhances cell proliferation and tumor growth of liver fluke-associated cholangiocarcinoma. Mol Cancer 10:102PubMedCrossRefGoogle Scholar
  40. 40.
    Qian Z, Zhao X, Jiang M, Jia W, Zhang C, Wang Y, Li B, Yue W (2012) Downregulation of cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9. BMC Cancer 12:442PubMedCrossRefGoogle Scholar
  41. 41.
    Li Z, Gou J, Xu J (2013) Down-regulation of focal adhesion signaling in response to cyclophilin A knockdown in human endometrial cancer cells, implicated by cDNA microarray analysis. Gynecol Oncol. doi: 10.1016/j.ygyno.2013.07.095 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Gynecology and Obstetrics, West China Second University HospitalSichuan UniversityChengduPeople’s Republic of China
  2. 2.Department of Psychosomatic MedicinePeople’s Hospital of Sichuan ProvinceChengduPeople’s Republic of China

Personalised recommendations