Cancer Chemotherapy and Pharmacology

, Volume 72, Issue 4, pp 757–765 | Cite as

Disruption of ZO-1/claudin-4 interaction in relation to inflammatory responses in methotrexate-induced intestinal mucositis

  • Kazuma Hamada
  • Naoko Kakigawa
  • Shuichi Sekine
  • Yoshihisa Shitara
  • Toshiharu Horie
Original Article

Abstract

Purpose

Methotrexate (MTX)-induced intestinal mucositis limits the use of the drug. We previously reported that MTX-dependent production of reactive oxygen species is an initiating signal leading to neutrophil migration and intestinal barrier dysfunction. Moreover, alterations of zonula occludens (ZO)-1, an integral component of tight junctions (TJs), contribute to its dysfunction. This study aimed to clarify the identity of inflammatory mediators in the intestine of MTX-treated rats and to evaluate MTX-stimulated alterations in the expression of TJ proteins other than ZO-1 (e.g., occludin and claudins).

Methods

Male Wistar rats were administrated MTX (15 mg kg−1) orally once daily for 4 days. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant-2, Toll-like receptor 4 (TLR4), and occludin were determined by real-time RT-PCR. Expression, distribution, and interactions of TJ proteins were evaluated by Western blotting, immunohistochemistry, and immunoprecipitation.

Results

MTX increased the mRNA levels of TNF-α, IL-1β, MIP-2, and TLR4 in the small intestine, as well as the protein expression of claudin-2. Increased claudin-2 and decreased claudin-4 immunostaining were also observed. Occludin mRNA levels were significantly diminished by MTX administration, whereas occludin protein levels and the interaction between ZO-1 and occludin were unaltered; however, the interaction between ZO-1 and claudin-4 was significantly compromised.

Conclusions

These results indicate that elevated levels of inflammatory cytokines and chemokines in the small intestine of MTX-treated rats may contribute to the inhibition of ZO-1/claudin-4 binding, and that inhibition of ZO-1/claudin-4 binding may in turn lead to a reduction in claudin-4 expression.

Keywords

Cytokine Methotrexate Mucositis Tight junction ZO-1 

References

  1. 1.
    Sonis ST (2004) The pathobiology of mucositis. Nat Rev Cancer 4(4):277–284PubMedCrossRefGoogle Scholar
  2. 2.
    Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141(7):1539–1550PubMedCrossRefGoogle Scholar
  3. 3.
    Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123(6 Pt 2):1777–1788PubMedCrossRefGoogle Scholar
  4. 4.
    Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171(6):939–945PubMedCrossRefGoogle Scholar
  5. 5.
    Gonzalez-Mariscal L, Betanzos A, Avila-Flores A (2000) MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 11(4):315–324PubMedCrossRefGoogle Scholar
  6. 6.
    Mineta K, Yamamoto Y, Yamazaki Y, Tanaka H, Tada Y, Saito K, Tamura A, Igarashi M, Endo T, Takeuchi K, Tsukita S (2011) Predicted expansion of the claudin multigene family. FEBS Lett 585(4):606–612PubMedCrossRefGoogle Scholar
  7. 7.
    Van Itallie CM, Anderson JM (2006) Claudins and epithelial paracellular transport. Annu Rev Physiol 68:403–429PubMedCrossRefGoogle Scholar
  8. 8.
    Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2(4):285–293PubMedCrossRefGoogle Scholar
  9. 9.
    Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126(4):741–754PubMedCrossRefGoogle Scholar
  10. 10.
    Logan RM, Stringer AM, Bowen JM, Gibson RJ, Sonis ST, Keefe DM (2009) Is the pathobiology of chemotherapy-induced alimentary tract mucositis influenced by the type of mucotoxic drug administered? Cancer Chemother Pharmacol 63(2):239–251PubMedCrossRefGoogle Scholar
  11. 11.
    Maeda T, Miyazono Y, Ito K, Hamada K, Sekine S, Horie T (2010) Oxidative stress and enhanced paracellular permeability in the small intestine of methotrexate-treated rats. Cancer Chemother Pharmacol 65(6):1117–1123PubMedCrossRefGoogle Scholar
  12. 12.
    de Koning BA, van Dieren JM, Lindenbergh-Kortleve DJ, van der Sluis M, Matsumoto T, Yamaguchi K, Einerhand AW, Samsom JN, Pieters R, Nieuwenhuis EE (2006) Contributions of mucosal immune cells to methotrexate-induced mucositis. Int Immunol 18(6):941–949PubMedCrossRefGoogle Scholar
  13. 13.
    Basuroy S, Seth A, Elias B, Naren AP, Rao R (2006) MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide. Biochem J 393(Pt 1):69–77PubMedGoogle Scholar
  14. 14.
    Mazzon E, Cuzzocrea S (2008) Role of TNF-alpha in ileum tight junction alteration in mouse model of restraint stress. Am J Physiol Gastrointest Liver Physiol 294(5):G1268–G1280PubMedCrossRefGoogle Scholar
  15. 15.
    Juric M, Xiao F, Amasheh S, May O, Wahl K, Bantel H, Manns MP, Seidler U, Bachmann O (2013) Increased epithelial permeability is the primary cause for bicarbonate loss in inflamed murine colon. Inflamm Bowel Dis 19(5):904–911PubMedCrossRefGoogle Scholar
  16. 16.
    Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B, Mankertz J, Gitter AH, Burgel N, Fromm M, Zeitz M, Fuss I, Strober W, Schulzke JD (2005) Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 129(2):550–564PubMedGoogle Scholar
  17. 17.
    Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56(1):61–72PubMedCrossRefGoogle Scholar
  18. 18.
    Hamada K, Shitara Y, Sekine S, Horie T (2010) Zonula Occludens-1 alterations and enhanced intestinal permeability in methotrexate-treated rats. Cancer Chemother Pharmacol 66(6):1031–1038PubMedCrossRefGoogle Scholar
  19. 19.
    Beutheu Youmba S, Belmonte L, Galas L, Boukhettala N, Bole-Feysot C, Dechelotte P, Coeffier M (2012) Methotrexate modulates tight junctions through NF-kappaB, MEK, and JNK pathways. J Pediatr Gastroenterol Nutr 54(4):463–470PubMedCrossRefGoogle Scholar
  20. 20.
    Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778(3):588–600PubMedCrossRefGoogle Scholar
  21. 21.
    Mankertz J, Schulzke JD (2007) Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 23(4):379–383PubMedCrossRefGoogle Scholar
  22. 22.
    Laukoetter MG, Nava P, Lee WY, Severson EA, Capaldo CT, Babbin BA, Williams IR, Koval M, Peatman E, Campbell JA, Dermody TS, Nusrat A, Parkos CA (2007) JAM-A regulates permeability and inflammation in the intestine in vivo. J Exp Med 204(13):3067–3076PubMedCrossRefGoogle Scholar
  23. 23.
    Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, Koyasu S, Matsumoto K, Takeda K, Ichijo H (2005) ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol 6(6):587–592PubMedCrossRefGoogle Scholar
  24. 24.
    Lorne E, Zmijewski JW, Zhao X, Liu G, Tsuruta Y, Park YJ, Dupont H, Abraham E (2008) Role of extracellular superoxide in neutrophil activation: interactions between xanthine oxidase and TLR4 induce proinflammatory cytokine production. Am J Physiol Cell Physiol 294(4):C985–C993PubMedCrossRefGoogle Scholar
  25. 25.
    Miyazono Y, Gao F, Horie T (2004) Oxidative stress contributes to methotrexate-induced small intestinal toxicity in rats. Scand J Gastroenterol 39(11):1119–1127PubMedCrossRefGoogle Scholar
  26. 26.
    Son DO, Satsu H, Shimizu M (2005) Histidine inhibits oxidative stress- and TNF-alpha-induced interleukin-8 secretion in intestinal epithelial cells. FEBS Lett 579(21):4671–4677PubMedCrossRefGoogle Scholar
  27. 27.
    Shi MM, Chong I, Godleski JJ, Paulauskis JD (1999) Regulation of macrophage inflammatory protein-2 gene expression by oxidative stress in rat alveolar macrophages. Immunology 97(2):309–315PubMedCrossRefGoogle Scholar
  28. 28.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314PubMedCrossRefGoogle Scholar
  29. 29.
    Song WB, Wang YY, Meng FS, Zhang QH, Zeng JY, Xiao LP, Yu XP, Peng DD, Su L, Xiao B, Zhang ZS (2010) Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-kappaB activation. PLoS One 5(9):e12969PubMedCrossRefGoogle Scholar
  30. 30.
    Boukhettala N, Leblond J, Claeyssens S, Faure M, Le Pessot F, Bole-Feysot C, Hassan A, Mettraux C, Vuichoud J, Lavoinne A, Breuille D, Dechelotte P, Coeffier M (2009) Methotrexate induces intestinal mucositis and alters gut protein metabolism independently of reduced food intake. Am J Physiol Endocrinol Metab 296(1):E182–E190PubMedCrossRefGoogle Scholar
  31. 31.
    Asehnoune K, Strassheim D, Mitra S, Kim JY, Abraham E (2004) Involvement of reactive oxygen species in Toll-like receptor 4-dependent activation of NF-kappa B. J Immunol 172(4):2522–2529PubMedGoogle Scholar
  32. 32.
    Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10(2):131–144PubMedCrossRefGoogle Scholar
  33. 33.
    Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol 153(2):263–272PubMedCrossRefGoogle Scholar
  34. 34.
    Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115(Pt 24):4969–4976PubMedCrossRefGoogle Scholar
  35. 35.
    Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147(1):195–204PubMedCrossRefGoogle Scholar
  36. 36.
    Kondoh M, Masuyama A, Takahashi A, Asano N, Mizuguchi H, Koizumi N, Fujii M, Hayakawa T, Horiguchi Y, Watanbe Y (2005) A novel strategy for the enhancement of drug absorption using a claudin modulator. Mol Pharmacol 67(3):749–756PubMedCrossRefGoogle Scholar
  37. 37.
    Suzuki T, Elias BC, Seth A, Shen L, Turner JR, Giorgianni F, Desiderio D, Guntaka R, Rao R (2009) PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA 106(1):61–66PubMedCrossRefGoogle Scholar
  38. 38.
    Utech M, Ivanov AI, Samarin SN, Bruewer M, Turner JR, Mrsny RJ, Parkos CA, Nusrat A (2005) Mechanism of IFN-gamma-induced endocytosis of tight junction proteins: myosin II-dependent vacuolarization of the apical plasma membrane. Mol Biol Cell 16(10):5040–5052PubMedCrossRefGoogle Scholar
  39. 39.
    Schwarz BT, Wang F, Shen L, Clayburgh DR, Su L, Wang Y, Fu YX, Turner JR (2007) LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology 132(7):2383–2394PubMedCrossRefGoogle Scholar
  40. 40.
    Saitou M, Furuse M, Sasaki H, Schulzke JD, Fromm M, Takano H, Noda T, Tsukita S (2000) Complex phenotype of mice lacking occludin, a component of tight junction strands. Mol Biol Cell 11(12):4131–4142PubMedCrossRefGoogle Scholar
  41. 41.
    Wang J, Lopez-Fraga M, Rynko A, Lo DD (2009) TNFR and LTbetaR agonists induce follicle-associated epithelium and M cell specific genes in rat and human intestinal epithelial cells. Cytokine 47(1):69–76PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kazuma Hamada
    • 1
    • 2
  • Naoko Kakigawa
    • 1
  • Shuichi Sekine
    • 1
  • Yoshihisa Shitara
    • 1
    • 3
  • Toshiharu Horie
    • 1
    • 2
  1. 1.Department of Biopharmaceutics, Graduate School of Pharmaceutical SciencesChiba UniversityChuo-kuJapan
  2. 2.Faculty of Pharmaceutical SciencesTeikyo Heisei UniversityNakano-kuJapan
  3. 3.Pharmacokinetics Laboratory, Pharmaceutical Research CenterMeiji Seika Pharma Co., Ltd.YokohamaJapan

Personalised recommendations