Cancer Chemotherapy and Pharmacology

, Volume 72, Issue 2, pp 359–368 | Cite as

Hepatic activation of irinotecan predicts tumour response in patients with colorectal liver metastases treated with DEBIRI: exploratory findings from a phase II study

  • R. P. Jones
  • P. Sutton
  • R. M. D. Greensmith
  • A. Santoyo-Castelazo
  • D. F. Carr
  • R. Jenkins
  • C. Rowe
  • J. Hamlett
  • B. K. Park
  • M. Terlizzo
  • E. O’Grady
  • P. Ghaneh
  • S. W. Fenwick
  • H. Z. Malik
  • G. J. Poston
  • N. R. Kitteringham
Original Article

Abstract

Purpose

The response of colorectal liver metastases to the cytotoxic agent irinotecan varies widely. Attempts to correlate tumour metabolism with response have been mixed. This study investigated the hepatic metabolism of irinotecan as a potential predictor of tumour response to irinotecan-eluting beads (DEBIRI).

Methods

Ten patients with colorectal liver metastases were treated with 200 mg irinotecan (as DEBIRI) as part of the PARAGON II study. Hepatic expression of key metabolising enzymes was measured using mass spectrometry-based proteomics. Serum drug concentrations and hepatic irinotecan metabolism were characterised and correlated with tumour response.

Results

Serum concentrations of irinotecan metabolites did not correlate with hepatic metabolism or pathological response. There was a strong correlation between hepatic CES-2 expression and activation of irinotecan (r2 = 0.96, p < 0.001). Patients with a UGT1A1*28 6/7 SNP showed no difference in drug metabolism or pathological response. Hepatic CES-2 mediated activation of irinotecan clearly correlated with tumour replacement by fibrosis (r2 = 0.54, p = 0.01).

Conclusion

This study provides the first evidence that hepatic activation of irinotecan predicts tumour response. Delivery of liver-targeted irinotecan to normal liver tissue rather than tumour may be a more rational approach to maximise response.

Keywords

DEBIRI Irinotecan Carboxylesterase Liver Colorectal Metastases 

References

  1. 1.
    Morris EJA, Forman D, Thomas JD, Quirke P, Taylor EF, Fairley L et al (2010) Surgical management and outcomes of colorectal cancer liver metastases. Br J Surg 97(7):1110–1118PubMedCrossRefGoogle Scholar
  2. 2.
    Rees M, Tekkis PP, Welsh FKS, O’Rourke T, John TG (2008) Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multifactorial model of 929 patients. Ann Surg 247(1):125–135PubMedCrossRefGoogle Scholar
  3. 3.
    Choti MA, Sitzmann JV, Tiburi MF, Sumetchotimetha W, Rangsin R, Schulick RD et al (2002) Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 235(6):759–766PubMedCrossRefGoogle Scholar
  4. 4.
    Folprecht G, Grothey A, Alberts S, Raab H-R, Köhne C-H (2005) Neoadjuvant treatment of unresectable colorectal liver metastases: correlation between tumour response and resection rates. Ann Oncol 16(8):1311–1319PubMedCrossRefGoogle Scholar
  5. 5.
    Rubbia-Brandt L, Giostra E, Brezault C, Roth AD, Andres A, Audard V et al (2007) Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol 18(2):299–304PubMedCrossRefGoogle Scholar
  6. 6.
    Poultsides GA, Bao F, Servais EL, Hernandez-Boussard T, Dematteo RP, Allen PJ et al (2012) Pathologic response to preoperative chemotherapy in colorectal liver metastases: fibrosis, not necrosis, predicts outcome. Ann Surg Oncol 19(9):2797–2804PubMedCrossRefGoogle Scholar
  7. 7.
    Nordlinger B, Sorbye H, Glimelius B, Poston GJ, Schlag PM, Rougier P et al (2008) Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet 371(9617):1007–1016PubMedCrossRefGoogle Scholar
  8. 8.
    Nordlinger B (2012) EORTC liver metastases intergroup randomized phase III study 40983: long-term survival results. J Clin Oncol 30, abstr 3508Google Scholar
  9. 9.
    Vauthey J-N, Pawlik TM, Ribero D, Wu T–T, Zorzi D, Hoff PM et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24(13):2065–2072PubMedCrossRefGoogle Scholar
  10. 10.
    Guichard S, Terret C, Hennebelle I, Lochon I, Chevreau P, Frétigny E et al (1999) CPT-11 converting carboxylesterase and topoisomerase activities in tumour and normal colon and liver tissues. Br J Cancer 80(3–4):364–370PubMedCrossRefGoogle Scholar
  11. 11.
    Hsiang YH, Hertzberg R, Hecht S, Liu LF (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem 260(27):14873–14878PubMedGoogle Scholar
  12. 12.
    Xu G, Zhang W, Ma MK, McLeod HL (2002) Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res 8(8):2605PubMedGoogle Scholar
  13. 13.
    Lau WC, Welch TD, Shields T, Rubenfire M, Tantry US, Gurbel PA (2011) The effect of St John’s Wort on the pharmacodynamic response of clopidogrel in hyporesponsive volunteers and patients: increased platelet inhibition by enhancement of CYP3A4 metabolic activity. J Cardiovasc Pharmacol 57(1):86–93PubMedCrossRefGoogle Scholar
  14. 14.
    Iyer L, Das S, Janisch L, Wen M, Ramírez J, Karrison T et al (2002) UGT1A1*28 polymorphism as a determinant of irinotecan disposition and toxicity. Pharmacogenomics J 2(1):43–47PubMedCrossRefGoogle Scholar
  15. 15.
    Mathijssen RHJ, de Jong FA, van Schaik RHN, Lepper ER, Friberg LE, Rietveld T et al (2004) Prediction of irinotecan pharmacokinetics by use of cytochrome P450 3A4 phenotyping probes. J Natl Cancer Inst 96(21):1585–1592PubMedCrossRefGoogle Scholar
  16. 16.
    Seymour MT, Maughan TS, Ledermann JA, Topham C, James R, Gwyther SJ et al (2007) Different strategies of sequential and combination chemotherapy for patients with poor prognosis advanced colorectal cancer (MRC FOCUS): a randomised controlled trial. Lancet 370(9582):143–152PubMedCrossRefGoogle Scholar
  17. 17.
    Koopman M, Knijn N, Richman S, Seymour M, Quirke P, van Tinteren H et al (2009) 6003 The correlation between Topoisomerase-I (Topo1) expression and outcome of treatment with capecitabine and irinotecan in advanced colorectal cancer (ACC) patients (pts) treated in the CAIRO study of the Dutch Colorectal Cancer Group (DCCG). Eur J Cancer Suppl 7(2):321–322CrossRefGoogle Scholar
  18. 18.
    Jones RP (2012) Neoadjuvant treatment of colorectal liver metastases (CRLM) with drug eluting beads trans-arterial chemoembolization (DEBIRI-TACE): a multi-institute phase II study in resectable metastases. J Clin Oncol 30, abstr 3613Google Scholar
  19. 19.
    Wyatt J, Hübscher S, and Goldin R (2012) Standards and datasets for reporting cancer; liver resection specimens, 2nd edn. Royal College of Pathologists, LondonGoogle Scholar
  20. 20.
    Rubbia-Brandt L, Giostra E, Brezault C, Roth AD, Andres A, Audard V et al (2007) Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol 18(2):299–304PubMedCrossRefGoogle Scholar
  21. 21.
    Rowe C, Goldring CEP, Kitteringham NR, Jenkins RE, Lane BS, Sanderson C et al (2010) Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J Proteome Res 9(5):2658–2668PubMedCrossRefGoogle Scholar
  22. 22.
    Gustincich S, Manfioletti G, Del Sal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. Biotechniques 11(3):298–300, 302Google Scholar
  23. 23.
    Hertzberg RP, Caranfa MJ, Holden KG, Jakas DR, Gallagher G, Mattern MR et al (1989) Modification of the hydroxy lactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J Med Chem 32(3):715–720PubMedCrossRefGoogle Scholar
  24. 24.
    Fda US (2001) Guidance for industry: bioanalytical method validation. CDER, Rockville, MDGoogle Scholar
  25. 25.
    Martin RCG, Joshi J, Robbins K, Tomalty D, Bosnjakovik P, Derner M et al (2010) Hepatic intra-arterial injection of drug-eluting bead, irinotecan (DEBIRI) in unresectable colorectal liver metastases refractory to systemic chemotherapy: results of multi-institutional study. Ann Surg Oncol 18(1):192–198PubMedCrossRefGoogle Scholar
  26. 26.
    Fiorentini G, Aliberti C, Tilli M, Mulazzani L, Graziano F, Giordani P et al (2012) Intra-arterial infusion of irinotecan-loaded drug-eluting beads (DEBIRI) versus intravenous therapy (FOLFIRI) for hepatic metastases from colorectal cancer: final results of a phase III study. Anticancer Res 32(4):1387–1395PubMedGoogle Scholar
  27. 27.
    Blazer DG, Kishi Y, Maru DM, Kopetz S, Chun YS, Overman MJ et al (2008) Pathologic response to preoperative chemotherapy: a new outcome end point after resection of hepatic colorectal metastases. J Clin Oncol 26(33):5344–5351PubMedCrossRefGoogle Scholar
  28. 28.
    Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F et al (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26(16):2690–2698PubMedCrossRefGoogle Scholar
  29. 29.
    Yu J, Shannon WD, Watson MA, McLeod HL (2005) Gene expression profiling of the irinotecan pathway in colorectal cancer. Clin Cancer Res 11(5):2053–2062PubMedCrossRefGoogle Scholar
  30. 30.
    Rivory LP, Bowles MR, Robert J, Pond SM (1996) Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10-hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol 52(7):1103–1111PubMedCrossRefGoogle Scholar
  31. 31.
    Mathijssen RH, van Alphen RJ, Verweij J, Loos WJ, Nooter K, Stoter G, Sparreboom A (2001) Clinical pharmacokinetics and metabolism of irinotecan (CPT-11). Clin Cancer Res 7(8):2182–2194PubMedGoogle Scholar
  32. 32.
    Taylor RR, Tang Y, Gonzalez MV, Stratford PW, Lewis AL (2007) Irinotecan drug eluting beads for use in chemoembolization: in vitro and in vivo evaluation of drug release properties. Eur J Pharm Sci 30(1):7–14PubMedCrossRefGoogle Scholar
  33. 33.
    Rouits E, Charasson V, Pétain A, Boisdron-Celle M, Delord J-P, Fonck M et al (2008) Pharmacokinetic and pharmacogenetic determinants of the activity and toxicity of irinotecan in metastatic colorectal cancer patients. Br J Cancer 99(8):1239–1245PubMedCrossRefGoogle Scholar
  34. 34.
    Eichler K, Zangos S, Mack MG, Hammerstingl R, Gruber-Rouh T, Gallus C, Vogl TJ (2012) First human study in treatment of unresectable liver metastases from colorectal cancer with irinotecan-loaded beads (DEBIRI). Int J Oncol 41(4):1213–1220PubMedGoogle Scholar
  35. 35.
    de Jonge MJ, Verweij J, de Bruijn P, Brouwer E, Mathijssen RH, van Alphen RJ et al (2000) Pharmacokinetic, metabolic, and pharmacodynamic profiles in a dose-escalating study of irinotecan and cisplatin. J Clin Oncol 18(1):195–203PubMedGoogle Scholar
  36. 36.
    Redlich G, Zanger UM, Riedmaier S, Bache N, Giessing ABM, Eisenacher M et al (2008) Distinction between human cytochrome P450 (CYP) isoforms and identification of new phosphorylation sites by mass spectrometry. J Proteome Res 7(11):4678–4688PubMedCrossRefGoogle Scholar
  37. 37.
    Yang J, Cai L, Huang H, Liu B, Wu Q (2012) Genetic variations and haplotype diversity of the UGT1 gene cluster in the Chinese population. PLoS One 7(4):e33988PubMedCrossRefGoogle Scholar
  38. 38.
    Holmes RS, Wright MW, Laulederkind SJF, Cox LA, Hosokawa M, Imai T et al (2010) Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins. Mamm Genome 21(9–10):427–441PubMedCrossRefGoogle Scholar
  39. 39.
    Cecchin E, Corona G, Masier S, Biason P, Cattarossi G, Frustaci S et al (2005) Carboxylesterase isoform 2 mRNA expression in peripheral blood mononuclear cells is a predictive marker of the irinotecan to SN38 activation step in colorectal cancer patients. Clin Cancer Res 11(19 Pt 1):6901–6907PubMedCrossRefGoogle Scholar
  40. 40.
    Silva MA, Hegab B, Hyde C, Guo B, Buckels JAC, Mirza DF (2008) Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 57(11):1592–1596PubMedCrossRefGoogle Scholar
  41. 41.
    d’Esposito F, Nebot N, Edwards RJ, Murray M (2010) Impaired irinotecan biotransformation in hepatic microsomal fractions from patients with chronic liver disease. Br J Clin Pharmacol 70(3):400–408PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang Y, Cheng X, Aleksunes L, Klaassen CD (2012) Transcription factor-mediated regulation of carboxylesterase enzymes in livers of mice. Drug Metab Dispos 40(6):1191–1197PubMedCrossRefGoogle Scholar
  43. 43.
    Leonardo CC, Doré S (2011) Dietary flavonoids are neuroprotective through Nrf2-coordinated induction of endogenous cytoprotective proteins. Nutr Neurosci 14(5):226–236PubMedCrossRefGoogle Scholar
  44. 44.
    Barter ZE, Chowdry JE, Harlow JR et al (2008) Covariation of human microsomal protein per gram of liver with age: absence of influence of operator and sample storage may justify interlaboratory data pooling. Drug Metab Dispos 36(12):2405–2409PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. P. Jones
    • 1
    • 2
    • 3
  • P. Sutton
    • 1
    • 2
  • R. M. D. Greensmith
    • 2
  • A. Santoyo-Castelazo
    • 2
  • D. F. Carr
    • 4
  • R. Jenkins
    • 2
  • C. Rowe
    • 2
  • J. Hamlett
    • 2
  • B. K. Park
    • 2
  • M. Terlizzo
    • 5
  • E. O’Grady
    • 6
  • P. Ghaneh
    • 1
  • S. W. Fenwick
    • 3
  • H. Z. Malik
    • 3
  • G. J. Poston
    • 3
  • N. R. Kitteringham
    • 2
  1. 1.School of Cancer Studies, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  2. 2.MRC Centre for Drug Safety Science, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  3. 3.Northwest Hepatobiliary UnitAintree University HospitalLiverpoolUK
  4. 4.Department of Molecular and Clinical Pharmacology, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  5. 5.Department of HistopathologyAintree University HospitalLiverpoolUK
  6. 6.Department of RadiologyAintree University HospitalLiverpoolUK

Personalised recommendations