Cancer Chemotherapy and Pharmacology

, Volume 72, Issue 2, pp 329–340 | Cite as

Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines

  • Linda SoomanEmail author
  • Simon Ekman
  • Claes Andersson
  • Hanna Göransson Kultima
  • Anders Isaksson
  • Fredrik Johansson
  • Michael Bergqvist
  • Erik Blomquist
  • Johan Lennartsson
  • Joachim Gullbo
Original Article



The current treatment strategies for glioblastoma have limited health and survival benefits for the patients. A common obstacle in the treatment is chemoresistance. A possible strategy to evade this problem may be to combine chemotherapeutic drugs with agents inhibiting resistance mechanisms. The aim with this study was to identify molecular pathways influencing drug resistance in glioblastoma-derived cells and to evaluate the potential of pharmacological interference with these pathways to identify synergistic drug combinations.


Global gene expressions and drug sensitivities to three chemotherapeutic drugs (imatinib, camptothecin and temozolomide) were measured in six human glioblastoma-derived cell lines. Gene expressions that correlated to drug sensitivity or resistance were identified and mapped to specific pathways. Selective inhibitors of these pathways were identified. The effects of six combinations of inhibitors and chemotherapeutic drugs were evaluated in glioblastoma-derived cell lines. Drug combinations with synergistic effects were also evaluated in non-cancerous epithelial cells.


Four drug combinations had synergistic effects in at least one of the tested glioblastoma-derived cell lines; camptothecin combined with gefitinib (epidermal growth factor receptor inhibitor) or NSC 23766 (ras-related C3 botulinum toxin substrate 1 inhibitor) and imatinib combined with DAPT (Notch signaling inhibitor) or NSC 23766. Of these, imatinib combined with DAPT or NSC 23766 did not have synergistic effects in non-cancerous epithelial cells. Two drug combinations had at least additive effects in one of the tested glioblastoma-derived cell lines; temozolomide combined with gefitinib or PF-573228 (focal adhesion kinase inhibitor).


Four synergistic and two at least additive drug combinations were identified in glioblastoma-derived cells. Pathways targeted by these drug combinations may serve as targets for future drug development with the potential to increase efficacy of currently used/evaluated chemotherapy.


Glioblastoma Synergistic drug combinations Camptothecin Imatinib 



The authors would like to thank Prof. Aristidis Moustakas, Ludwig Institute for Cancer Research, Uppsala for kindly providing the p12xCSL-luciferase and pCMV-β-galactosidase plasmids and Dr. H Hedman, Umea University, the UCSF/Neurosurgery Tissue Bank, and Dr. JS Guillamo for providing us with the glioma cell lines used in the experiments The authors would like to express their gratitude for the financial support from the Cancer Foundation at Gavle Hospital, the Research Fund at the Department of Oncology, Uppsala University Hospital, the Swedish Cancer Society and the Swedish Research Council.

Supplementary material

280_2013_2197_MOESM1_ESM.docx (618 kb)
Supplementary material 1 (DOCX 618 kb)
280_2013_2197_MOESM2_ESM.pdf (739 kb)
The microarray probes with gene expression-drug activity correlations (permutation p < 0.05) to the three therapeutic drugs.(PDF 738 kb)


  1. 1.
    Bai RY, Staedtke V, Riggins GJ (2011) Molecular targeting of glioblastoma: drug discovery and therapies. Trends Mol Med 17:301–312PubMedCrossRefGoogle Scholar
  2. 2.
    Blaney SM, Takimoto C, Murry DJ, Kuttesch N, McCully C, Cole DE, Godwin K, Balis FM (1998) Plasma and cerebrospinal fluid pharmacokinetics of 9-aminocamptothecin (9-AC), irinotecan (CPT-11), and SN-38 in nonhuman primates. Cancer Chemother Pharmacol 41:464–468PubMedCrossRefGoogle Scholar
  3. 3.
    Bleeker FE, Molenaar RJ, Leenstra S (2012) Recent advances in the molecular understanding of glioblastoma. J Neurooncol 108:11–27PubMedCrossRefGoogle Scholar
  4. 4.
    Brown PD, Krishnan S, Sarkaria JN, Wu W, Jaeckle KA, Uhm JH, Geoffroy FJ, Arusell R, Kitange G, Jenkins RB, Kugler JW, Morton RF, Rowland KM Jr., Mischel P, Yong WH, Scheithauer BW, Schiff D, Giannini C, Buckner JC, North Central Cancer Treatment Group Study N (2008) Phase I/II trial of erlotinib and temozolomide with radiation therapy in the treatment of newly diagnosed glioblastoma multiforme: North Central Cancer Treatment Group Study N0177. J Clin Oncol 26: 5603–5609Google Scholar
  5. 5.
    Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446PubMedCrossRefGoogle Scholar
  6. 6.
    Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  7. 7.
    Engh JA (2011) Notch1 identified as a prognostic factor for glioma patients. Neurosurgery 68:N22–N23PubMedCrossRefGoogle Scholar
  8. 8.
    Gursel DB, Berry N, Boockvar JA (2012) The contribution of Notch signaling to glioblastoma via activation of cancer stem cell self-renewal: the role of the endothelial network. Neurosurgery 70:N19–N21PubMedCrossRefGoogle Scholar
  9. 9.
    Gustafsson MV, Zheng X, Pereira T, Gradin K, Jin S, Lundkvist J, Ruas JL, Poellinger L, Lendahl U, Bondesson M (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9:617–628PubMedCrossRefGoogle Scholar
  10. 10.
    Hao H, Naomoto Y, Bao X, Watanabe N, Sakurama K, Noma K, Motoki T, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Wang ZG, Takaoka M (2009) Focal adhesion kinase as potential target for cancer therapy (Review). Oncol Rep 22:973–979PubMedCrossRefGoogle Scholar
  11. 11.
    Hare CB, Elion GB, Houghton PJ, Houghton JA, Keir S, Marcelli SL, Bigner DD, Friedman HS (1997) Therapeutic efficacy of the topoisomerase I inhibitor 7-ethyl-10-(4-[1-piperidino]-1-piperidino)-carbonyloxy-camptothecin against pediatric and adult central nervous system tumor xenografts. Cancer Chemother Pharmacol 39:187–191PubMedCrossRefGoogle Scholar
  12. 12.
    Holdhoff M, Supko JG, Gallia GL, Hann CL, Bonekamp D, Ye X, Cao B, Olivi A, Grossman SA (2010) Intratumoral concentrations of imatinib after oral administration in patients with glioblastoma multiforme. J Neurooncol 97:241–245PubMedCrossRefGoogle Scholar
  13. 13.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264PubMedCrossRefGoogle Scholar
  14. 14.
    Jakobsen JN, Hasselbalch B, Stockhausen MT, Lassen U, Poulsen HS (2011) Irinotecan and bevacizumab in recurrent glioblastoma multiforme. Expert Opin Pharmacother 12:825–833PubMedCrossRefGoogle Scholar
  15. 15.
    Jiao X, Sherman BT, da Huang W, Stephens R, Baseler MW, Lane HC, Lempicki RA (2012) DAVID-WS: a stateful web service to facilitate gene/protein list analysis. Bioinformatics 28:1805–1806PubMedCrossRefGoogle Scholar
  16. 16.
    Johannessen TC, Bjerkvig R (2012) Molecular mechanisms of temozolomide resistance in glioblastoma multiforme. Expert Rev Anticancer Ther 12:635–642PubMedCrossRefGoogle Scholar
  17. 17.
    Karvela M, Helgason GV, Holyoake TL (2012) Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Rev Anticancer Ther 12:381–392PubMedCrossRefGoogle Scholar
  18. 18.
    Kim S, Prichard CN, Younes MN, Yazici YD, Jasser SA, Bekele BN, Myers JN (2006) Cetuximab and irinotecan interact synergistically to inhibit the growth of orthotopic anaplastic thyroid carcinoma xenografts in nude mice. Clin Cancer Res 12:600–607PubMedCrossRefGoogle Scholar
  19. 19.
    Koizumi F, Kanzawa F, Ueda Y, Koh Y, Tsukiyama S, Taguchi F, Tamura T, Saijo N, Nishio K (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib (“Iressa”) and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int J Cancer 108:464–472PubMedCrossRefGoogle Scholar
  20. 20.
    Kopan R (2012) Notch signaling. Cold Spring Harb Perspect Biol 4:a011213Google Scholar
  21. 21.
    Lindhagen E, Nygren P, Larsson R (2008) The fluorometric microculture cytotoxicity assay. Nat Protoc 3:1364–1369PubMedCrossRefGoogle Scholar
  22. 22.
    Portnow J, Badie B, Chen M, Liu A, Blanchard S, Synold TW (2009) The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: potential implications for the current approach to chemoradiation. Clin Cancer Res 15:7092–7098PubMedCrossRefGoogle Scholar
  23. 23.
    Ramis G, Thomas-Moya E, Fernandez de Mattos S, Rodriguez J, Villalonga P (2012) EGFR inhibition in glioma cells modulates Rho signaling to inhibit cell motility and invasion and cooperates with temozolomide to reduce cell growth. PLoS ONE 7:e38770PubMedCrossRefGoogle Scholar
  24. 24.
    Reardon DA, Rich JN, Friedman HS, Bigner DD (2006) Recent advances in the treatment of malignant astrocytoma. J Clin Oncol 24:1253–1265PubMedCrossRefGoogle Scholar
  25. 25.
    Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets 16:103–119PubMedCrossRefGoogle Scholar
  26. 26.
    Sasine JP, Feun LG (2011) Topoisomerase I inhibitors in the treatment of primary CNS Malignancies: an update on recent trends. Anticancer Agents Med Chem 10:683–696Google Scholar
  27. 27.
    Schoenenberger CA, Mannherz HG, Jockusch BM (2011) Actin: from structural plasticity to functional diversity. Eur J Cell Biol 90:797–804PubMedCrossRefGoogle Scholar
  28. 28.
    Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK (2012) Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31PubMedCrossRefGoogle Scholar
  29. 29.
    Shah GD, Silver JS, Rosenfeld SS, Gavrilovic IT, Abrey LE, Lassman AB (2007) Myelosuppression in patients benefiting from imatinib with hydroxyurea for recurrent malignant gliomas. J Neurooncol 85:217–222PubMedCrossRefGoogle Scholar
  30. 30.
    Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C, Luzzio MJ, Cooper B, Kath JC, Roberts WG, Parsons JT (2007) Cellular characterization of a novel focal adhesion kinase inhibitor. J Biol Chem 282:14845–14852PubMedCrossRefGoogle Scholar
  31. 31.
    Sobrero AF, Maurel J, Fehrenbacher L, Scheithauer W, Abubakr YA, Lutz MP, Vega-Villegas ME, Eng C, Steinhauer EU, Prausova J, Lenz HJ, Borg C, Middleton G, Kroning H, Luppi G, Kisker O, Zubel A, Langer C, Kopit J, Burris HA 3rd (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319PubMedCrossRefGoogle Scholar
  32. 32.
    Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, Scherf U, Lee JK, Reinhold WO, Weinstein JN, Mesirov JP, Lander ES, Golub TR (2001) Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci USA 98:10787–10792PubMedCrossRefGoogle Scholar
  33. 33.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, Curschmann J, Janzer RC, Ludwin SK, Gorlia T, Allgeier A, Lacombe D, Cairncross JG, Eisenhauer E, Mirimanoff RO, European Organisation for R, Treatment of Cancer Brain T, Radiotherapy G, National Cancer Institute of Canada Clinical Trials G (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996Google Scholar
  34. 34.
    Tomicic MT, Kaina B (2013) Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta 1835:11–27PubMedGoogle Scholar
  35. 35.
    Vassal G, Terrier-Lacombe MJ, Bissery MC, Venuat AM, Gyergyay F, Benard J, Morizet J, Boland I, Ardouin P, Bressac-de-Paillerets B, Gouyette A (1996) Therapeutic activity of CPT-11, a DNA-topoisomerase I inhibitor, against peripheral primitive neuroectodermal tumour and neuroblastoma xenografts. Br J Cancer 74:537–545PubMedCrossRefGoogle Scholar
  36. 36.
    Wen PY, Yung WK, Lamborn KR, Dahia PL, Wang Y, Peng B, Abrey LE, Raizer J, Cloughesy TF, Fink K, Gilbert M, Chang S, Junck L, Schiff D, Lieberman F, Fine HA, Mehta M, Robins HI, DeAngelis LM, Groves MD, Puduvalli VK, Levin V, Conrad C, Maher EA, Aldape K, Hayes M, Letvak L, Egorin MJ, Capdeville R, Kaplan R, Murgo AJ, Stiles C, Prados MD (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: north American Brain Tumor Consortium Study 99–08. Clin Cancer Res 12:4899–4907PubMedCrossRefGoogle Scholar
  37. 37.
    Vredenburgh JJ, Desjardins A, Reardon DA, Friedman HS (2009) Experience with irinotecan for the treatment of malignant glioma. Neuro Oncol 11:80–91PubMedCrossRefGoogle Scholar
  38. 38.
    Yoon CH, Hyun KH, Kim RK, Lee H, Lim EJ, Chung HY, An S, Park MJ, Suh Y, Kim MJ, Lee SJ (2011) The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells. FEBS Lett 585:2331–2338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Linda Sooman
    • 1
    Email author
  • Simon Ekman
    • 1
  • Claes Andersson
    • 2
  • Hanna Göransson Kultima
    • 3
  • Anders Isaksson
    • 3
  • Fredrik Johansson
    • 1
  • Michael Bergqvist
    • 1
  • Erik Blomquist
    • 1
  • Johan Lennartsson
    • 4
  • Joachim Gullbo
    • 1
    • 2
  1. 1.Rudbeck Laboratory, Department of Radiation, Oncology and Radiation Science, Section of OncologyUppsala UniversityUppsalaSweden
  2. 2.Division of Clinical Pharmacology, Department of Medical SciencesUppsala University HospitalUppsalaSweden
  3. 3.Science for Life Laboratory, Department of Medical SciencesUppsala UniversityUppsalaSweden
  4. 4.Ludwig Institute for Cancer ResearchUppsala UniversityUppsalaSweden

Personalised recommendations