Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 71, Issue 2, pp 275–285 | Cite as

The anti-cancer activities of jasmonates

  • Ziv Raviv
  • Sharon Cohen
  • Dortit Reischer-Pelech
Review Article

Abstract

Jasmonates, plant stress hormones protecting the plant from microbial pathogens and environmental stresses, were also discovered to have toxic activities toward mammalian cancer cells. Methyl jasmonate (MJ) was found to be the most active anti-cancer derivate among natural jasmonates, exhibiting a specific cell death-induction effect toward several cancer cells. Since that discovery of jasmonates-inducing cancer cell death, the molecular mechanism of action of jasmonates leading to cell death was deciphered. Moreover, in addition to the direct effects of MJ on cancer cell death, it was found to deregulate several genes and affect various intracellular factors and cellular processes, such as sensitization of apoptotic cell death induced by TRAIL, cancer cell migration attenuation, cell cycle arrest, and differentiation. This mini-review summarizes over a decade of research of jasmonates as anti-cancer agents.

Keywords

Jasmonates Cancer Apoptosis Mitochondria Cancer metabolism Reactive oxygen species 

Notes

Acknowledgments

This review is dedicated to the memorial and honor of the late Professor Eliezer Flescher, who was the pioneer scientist on the subject of jasmonates in cancer therapy. This work was supported in part by a grant from the Cooperation Program in Cancer Research of the Deutsches Krebsforschunszentrum (DKFZ) and by the Israel Cancer Association to E. Flescher.

Conflict of interest

None.

References

  1. 1.
    Sembdner G, Parthier B (1993) The biochemistry and the physiological and molecular actions of jasmonates. Annu Rev Plant Physiol Plant Mol Biol 44:569–589CrossRefGoogle Scholar
  2. 2.
    Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381CrossRefPubMedGoogle Scholar
  3. 3.
    Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100(4):681–697CrossRefPubMedGoogle Scholar
  4. 4.
    Davies PJ (2004) Plant hormones-biosynthesis, signal transduction. Kluwer Academic Publishers, ActionGoogle Scholar
  5. 5.
    Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8(10):1809–1819PubMedGoogle Scholar
  6. 6.
    Beckers GJ, Spoel SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol (Stuttg) 8(1):1–10CrossRefGoogle Scholar
  7. 7.
    Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70(13–14):1581–1588PubMedGoogle Scholar
  8. 8.
    Devoto A, Turner JG (2003) Regulation of jasmonate-mediated plant responses in arabidopsis. Ann Bot 92(3):329–337CrossRefPubMedGoogle Scholar
  9. 9.
    Nakano T, Suzuki K, Ohtsuki N, Tsujimoto Y, Fujimura T, Shinshi H (2006) Identification of genes of the plant-specific transcription-factor families cooperatively regulated by ethylene and jasmonate in Arabidopsis thaliana. J Plant Res 119(4):407–413CrossRefPubMedGoogle Scholar
  10. 10.
    Smith JL, De Moraes CM, Mescher MC (2009) Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag Sci 65(5):497–503CrossRefPubMedGoogle Scholar
  11. 11.
    Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87(19):7713–7716CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang L, Xing D (2008) Methyl jasmonate induces production of reactive oxygen species and alterations in mitochondrial dynamics that precede photosynthetic dysfunction and subsequent cell death. Plant Cell Physiol 49(7):1092–1111CrossRefPubMedGoogle Scholar
  13. 13.
    Flescher E (2007) Jasmonates in cancer therapy. Cancer Lett 245(1–2):1–10CrossRefPubMedGoogle Scholar
  14. 14.
    Cohen S, Flescher E (2009) Methyl jasmonate: a plant stress hormone as an anti-cancer drug. Phytochemistry 70(13–14):1600–1609CrossRefPubMedGoogle Scholar
  15. 15.
    Fingrut O, Flescher E (2002) Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells. Leukemia 16(4):608–616CrossRefPubMedGoogle Scholar
  16. 16.
    Flescher E (2005) Jasmonates–a new family of anti-cancer agents. Anticancer Drugs 16(9):911–916CrossRefPubMedGoogle Scholar
  17. 17.
    Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65(5):1984–1993CrossRefPubMedGoogle Scholar
  18. 18.
    Fingrut O, Reischer D, Rotem R, Goldin N, Altboum I, Zan-Bar I, Flescher E (2005) Jasmonates induce nonapoptotic death in high-resistance mutant p53-expressing B-lymphoma cells. Br J Pharmacol 146(6):800–808CrossRefPubMedGoogle Scholar
  19. 19.
    Heyfets A, Flescher E (2007) Cooperative cytotoxicity of methyl jasmonate with anti-cancer drugs and 2-deoxy-d-glucose. Cancer Lett 250(2):300–310CrossRefPubMedGoogle Scholar
  20. 20.
    Kim JH, Lee SY, Oh SY, Han SI, Park HG, Yoo MA, Kang HS (2004) Methyl jasmonate induces apoptosis through induction of Bax/Bcl-XS and activation of caspase-3 via ROS production in A549 cells. Oncol Rep 12(6):1233–1238PubMedGoogle Scholar
  21. 21.
    Ezekwudo DE, Wang RC, Elegbede JA (2007) Methyl jasmonate induced apoptosis in human prostate carcinoma cells via 5-lipoxygenase dependent pathway. J Exp Ther Oncol 6(4):267–277PubMedGoogle Scholar
  22. 22.
    Yeruva L, Pierre KJ, Carper SW, Elegbede JA, Toy BJ, Wang RC (2006) Jasmonates induce apoptosis and cell cycle arrest in non-small cell lung cancer lines. Exp Lung Res 32(10):499–516CrossRefPubMedGoogle Scholar
  23. 23.
    Yeruva L, Elegbede JA, Carper SW (2008) Methyl jasmonate decreases membrane fluidity and induces apoptosis through tumor necrosis factor receptor 1 in breast cancer cells. Anticancer Drugs 19(8):766–776CrossRefPubMedGoogle Scholar
  24. 24.
    Yeruva L, Pierre KJ, Bathina M, Elegbede A, Carper SW (2008) Delayed cytotoxic effects of methyl jasmonate and cis-jasmone induced apoptosis in prostate cancer cells. Cancer Invest 26(9):890–899CrossRefPubMedGoogle Scholar
  25. 25.
    Tong QS, Jiang GS, Zheng LD, Tang ST, Cai JB, Liu Y, Zeng FQ, Dong JH (2008) Methyl jasmonate downregulates expression of proliferating cell nuclear antigen and induces apoptosis in human neuroblastoma cell lines. Anticancer Drugs 19(6):573–581CrossRefPubMedGoogle Scholar
  26. 26.
    Tong QS, Jiang GS, Zheng LD, Tang ST, Cai JB, Liu Y, Zeng FQ, Dong JH (2008) Natural jasmonates of different structures suppress the growth of human neuroblastoma cell line SH-SY5Y and its mechanisms. Acta Pharmacol Sin 29(7):861–869CrossRefPubMedGoogle Scholar
  27. 27.
    Ezekwudo D, Shashidharamurthy R, Devineni D, Bozeman E, Palaniappan R, Selvaraj P (2008) Inhibition of expression of anti-apoptotic protein Bcl-2 and induction of cell death in radioresistant human prostate adenocarcinoma cell line (PC-3) by methyl jasmonate. Cancer Lett 270(2):277–285CrossRefPubMedGoogle Scholar
  28. 28.
    Kniazhanski T, Jackman A, Heyfets A, Gonen P, Flescher E, Sherman L (2008) Methyl jasmonate induces cell death with mixed characteristics of apoptosis and necrosis in cervical cancer cells. Cancer Lett 271(1):34–46CrossRefPubMedGoogle Scholar
  29. 29.
    Milrot E, Jackman A, Kniazhanski T, Gonen P, Flescher E, Sherman L (2012) Methyl jasmonate reduces the survival of cervical cancer cells and downregulates HPV E6 and E7, and survivin. Cancer Lett 319(1):31–38CrossRefPubMedGoogle Scholar
  30. 30.
    Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112(4):481–490CrossRefPubMedGoogle Scholar
  31. 31.
    Dang CV, Semenza GL (1999) Oncogenic alterations of metabolism. Trends Biochem Sci 24(2):68–72CrossRefPubMedGoogle Scholar
  32. 32.
    Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181CrossRefPubMedGoogle Scholar
  33. 33.
    Kroemer G (2006) Mitochondria in cancer. Oncogene 25(34):4630–4632CrossRefPubMedGoogle Scholar
  34. 34.
    Pedersen PL (2007) The cancer cell’s “power plants” as promising therapeutic targets: an overview. J Bioenerg Biomembr 39(1):1–12CrossRefPubMedGoogle Scholar
  35. 35.
    Gogvadze V, Zhivotovsky B, Orrenius S (2009) The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31(1):60–74CrossRefPubMedGoogle Scholar
  36. 36.
    Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314CrossRefPubMedGoogle Scholar
  37. 37.
    Debatin KM, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21(57):8786–8803CrossRefPubMedGoogle Scholar
  38. 38.
    Ghobrial IM, Witzig TE, Adjei AA (2005) Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin 55(3):178–194CrossRefPubMedGoogle Scholar
  39. 39.
    Pedersen PL, Mathupala S, Rempel A, Geschwind JF, Ko YH (2002) Mitochondrial bound type II hexokinase: a key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta 1555(1–3):14–20PubMedGoogle Scholar
  40. 40.
    Nakashima RA, Mangan PS, Colombini M, Pedersen PL (1986) Hexokinase receptor complex in hepatoma mitochondria: evidence from N, N’-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25(5):1015–1021CrossRefPubMedGoogle Scholar
  41. 41.
    Bustamante E, Pedersen PL (1977) High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl Acad Sci USA 74(9):3735–3739CrossRefPubMedGoogle Scholar
  42. 42.
    Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25(34):4777–4786CrossRefPubMedGoogle Scholar
  43. 43.
    Pedersen PL (2007) Warburg, me and Hexokinase 2: multiple discoveries of key molecular events underlying one of cancers’ most common phenotypes, the “Warburg Effect”, i.e., elevated glycolysis in the presence of oxygen. J Bioenerg Biomembr 39(3):211–222CrossRefPubMedGoogle Scholar
  44. 44.
    Goldin N, Arzoine L, Heyfets A, Israelson A, Zaslavsky Z, Bravman T, Bronner V, Notcovich A, Shoshan-Barmatz V, Flescher E (2008) Methyl jasmonate binds to and detaches mitochondria-bound hexokinase. Oncogene 27(34):4636–4643CrossRefPubMedGoogle Scholar
  45. 45.
    Galluzzi L, Kepp O, Tajeddine N, Kroemer G (2008) Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene 27(34):4633–4635CrossRefPubMedGoogle Scholar
  46. 46.
    Elia U, Flescher E (2008) PI3 K/Akt pathway activation attenuates the cytotoxic effect of methyl jasmonate toward sarcoma cells. Neoplasia 10(11):1303–1313PubMedGoogle Scholar
  47. 47.
    Yuan TL, Cantley LC (2008) PI3 K pathway alterations in cancer: variations on a theme. Oncogene 27(41):5497–5510CrossRefPubMedGoogle Scholar
  48. 48.
    Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644CrossRefPubMedGoogle Scholar
  49. 49.
    West KA, Castillo SS, Dennis PA (2002) Activation of the PI3 K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat 5(6):234–248CrossRefPubMedGoogle Scholar
  50. 50.
    Falasca M (2010) PI3 K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des 16(12):1410–1416CrossRefPubMedGoogle Scholar
  51. 51.
    Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23(20):7315–7328CrossRefPubMedGoogle Scholar
  52. 52.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15(11):1406–1418CrossRefPubMedGoogle Scholar
  53. 53.
    Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16(5):819–830CrossRefPubMedGoogle Scholar
  54. 54.
    Majewski N, Nogueira V, Robey RB, Hay N (2004) Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol 24(2):730–740CrossRefPubMedGoogle Scholar
  55. 55.
    Oh SY, Kim JH, Park MJ, Kim SM, Yoon CS, Joo YM, Park JS, Han SI, Park HG, Kang HS (2005) Induction of heat shock protein 72 in C6 glioma cells by methyl jasmonate through ROS-dependent heat shock factor 1 activation. Int J Mol Med 16(5):833–839PubMedGoogle Scholar
  56. 56.
    Davies NJ, Hayden RE, Simpson PJ, Birtwistle J, Mayer K, Ride JP, Bunce CM (2009) AKR1C isoforms represent a novel cellular target for jasmonates alongside their mitochondrial-mediated effects. Cancer Res 69(11):4769–4775CrossRefPubMedGoogle Scholar
  57. 57.
    Penning TM, Byrns MC (2009) Steroid hormone transforming aldo-keto reductases and cancer. Ann N Y Acad Sci 1155:33–42CrossRefPubMedGoogle Scholar
  58. 58.
    Matsuura K, Shiraishi H, Hara A, Sato K, Deyashiki Y, Ninomiya M, Sakai S (1998) Identification of a principal mRNA species for human 3alpha-hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. J Biochem 124(5):940–946CrossRefPubMedGoogle Scholar
  59. 59.
    Lan Q, Mumford JL, Shen M, Demarini DM, Bonner MR, He X, Yeager M, Welch R, Chanock S, Tian L, Chapman RS, Zheng T, Keohavong P, Caporaso N, Rothman N (2004) Oxidative damage-related genes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions. Carcinogenesis 25(11):2177–2181CrossRefPubMedGoogle Scholar
  60. 60.
    Frei E, BasJr RC, Kufe DW, Pollock RE, Weichselbaum RR, Holland JF, Gansler TS (2003) Principles of Dose, Schedule, and Combination Chemotherapy. Cancer Medicine. Cancer Medicine, BC Decker, pp 817–837Google Scholar
  61. 61.
    Takimoto C, Coia LR, Hoskins WJ, Wagman LD (2005) Principles of Oncologic Pharmacotherapy. A Multidisciplinary Approach. CMP Healthcare Media, Manhasset, Cancer Management, pp 23–42Google Scholar
  62. 62.
    Cai S, Xu Y, Cooper RJ, Ferkowicz MJ, Hartwell JR, Pollok KE, Kelley MR (2005) Mitochondrial targeting of human O6-methylguanine DNA methyltransferase protects against cell killing by chemotherapeutic alkylating agents. Cancer Res 65(8):3319–3327PubMedGoogle Scholar
  63. 63.
    Yeruva L, Hall C, Elegbede JA, Carper SW (2010) Perillyl alcohol and methyl jasmonate sensitize cancer cells to cisplatin. Anticancer Drugs 21(1):1–9CrossRefPubMedGoogle Scholar
  64. 64.
    Raviv Z, Zilberberg A, Cohen S, Reischer-Pelech D, Horrix C, Berger MR, Rosin-Arbesfeld R, Flescher E (2011) Methyl jasmonate down-regulates survivin expression and sensitizes colon carcinoma cells towards TRAIL-induced cytotoxicity. Br J Pharmacol 164(5):1433–1444CrossRefPubMedGoogle Scholar
  65. 65.
    Zhao J, Kang S, Zhang X, You S, Park JS, Jung JH, Kim DK (2010) Apoptotic activity of a new jasmonate analogue is associated with its induction of DNA damage. Oncol Rep 24(3):771–777PubMedGoogle Scholar
  66. 66.
    Park C, Jin CY, Kim GY, Cheong J, Jung JH, Yoo YH, Choi YH (2010) A methyl jasmonate derivative, J-7, induces apoptosis in human hepatocarcinoma Hep3B cells in vitro. Toxicol In Vitro 24(7):1920–1926CrossRefPubMedGoogle Scholar
  67. 67.
    Park C, Jin CY, Hwang HJ, Kim GY, Jung JH, Kim WJ, Yoo YH, Choi YH (2012) J7, a methyl jasmonate derivative, enhances TRAIL-mediated apoptosis through up-regulation of reactive oxygen species generation in human hepatoma HepG2 cells. Toxicol In Vitro 26(1):86–93CrossRefPubMedGoogle Scholar
  68. 68.
    Van Geelen CM, de Vries EG, de Jong S (2004) Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7(6):345–358CrossRefPubMedGoogle Scholar
  69. 69.
    Koschny R, Walczak H, Ganten TM (2007) The promise of TRAIL–potential and risks of a novel anticancer therapy. J Mol Med 85(9):923–935CrossRefPubMedGoogle Scholar
  70. 70.
    Johnstone RW, Frew AJ, Smyth MJ (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat Rev Cancer 8(10):782–798CrossRefPubMedGoogle Scholar
  71. 71.
    Jiang G, Zhao J, Xiao X, Tao D, Gu C, Tong Q, Luo B, Wang L, Zeng F (2011) AN N-terminal Smac peptide sensitizes human prostate carcinoma cells to methyl jasmonate-induced apoptosis. Cancer Lett 302(1):37–46CrossRefPubMedGoogle Scholar
  72. 72.
    Xiao XY, Jiang GS, Wang L, Lv L, Zeng FQ (2011) Predominant enhancement of apoptosis induced by methyl jasmonate in bladder cancer cells: therapeutic effect of the Antp-conjugated Smac peptide. Anticancer Drugs 22(9):853–863CrossRefPubMedGoogle Scholar
  73. 73.
    Milrot E, Jackman A, Flescher E, Gonen P, Kelson I, Keisari Y, Sherman L (2012) Enhanced killing of cervical cancer cells by combinations of methyl jasmonate with cisplatin, X or alpha radiation. Invest New DrugsGoogle Scholar
  74. 74.
    Pietenpol JA, Stewart ZA (2002) Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182:475–481CrossRefPubMedGoogle Scholar
  75. 75.
    Vermeulen K, Berneman ZN, Van Bockstaele DR (2003) Cell cycle and apoptosis. Cell Prolif 36(3):165–175CrossRefPubMedGoogle Scholar
  76. 76.
    Ishii Y, Kiyota H, Sakai S, Honma Y (2004) Induction of differentiation of human myeloid leukemia cells by jasmonates, plant hormones. Leukemia 18(8):1413–1419CrossRefPubMedGoogle Scholar
  77. 77.
    Tsumura H, Akimoto M, Kiyota H, Ishii Y, Ishikura H, Honma Y (2008) Gene expression profiles in differentiating leukemia cells induced by methyl jasmonate are similar to those of cytokinins and methyl jasmonate analogs induce the differentiation of human leukemia cells in primary culture. Leukemia 23(4):753–760CrossRefPubMedGoogle Scholar
  78. 78.
    Reischer D, Heyfets A, Shimony S, Nordenberg J, Kashman Y, Flescher E (2007) Effects of natural and novel synthetic jasmonates in experimental metastatic melanoma. Br J Pharmacol 150(6):738–749CrossRefPubMedGoogle Scholar
  79. 79.
    Dang HT, Lee HJ, Yoo ES, Shinde PB, Lee YM, Hong J, Kim DK, Jung JH (2008) Anti-inflammatory constituents of the red alga Gracilaria verrucosa and their synthetic analogues. J Nat Prod 71(2):232–240CrossRefPubMedGoogle Scholar
  80. 80.
    Dang HT, Lee HJ, Yoo ES, Hong J, Bao B, Choi JS, Jung JH (2008) New jasmonate analogues as potential anti-inflammatory agents. Bioorg Med Chem 16(24):10228–10235CrossRefPubMedGoogle Scholar
  81. 81.
    Lee HJ, Maeng K, Dang HT, Kang GJ, Ryou C, Jung JH, Kang HK, Prchal JT, Yoo ES, Yoon D (2011) Anti-inflammatory effect of methyl dehydrojasmonate (J2) is mediated by the NF-kappaB pathway. J Mol Med (Berl) 89(1):83–90CrossRefGoogle Scholar
  82. 82.
    Pereira Lopes JE, Barbosa MR, Stella CN, Santos WA, Pereira EM, Nogueira-Neto J, Augusto EM, Silva LV, Smaili SS, Gomes LF (2010) In vivo anti-angiogenic effects further support the promise of the antineoplasic activity of methyl jasmonate. Braz J Biol 70(2):443–449CrossRefPubMedGoogle Scholar
  83. 83.
    Palmieri B, Iannitti T, Capone S, Flescher E (2011) A preliminary study of the local treatment of preneoplastic and malignant skin lesions using methyl jasmonate. Eur Rev Med Pharmacol Sci 15(3):333–336PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ziv Raviv
    • 1
  • Sharon Cohen
    • 1
  • Dortit Reischer-Pelech
    • 1
  1. 1.Department of Clinical Microbiology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations