Cancer Chemotherapy and Pharmacology

, Volume 71, Issue 1, pp 13–20 | Cite as

Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer

  • Melis Kartal Yandım
  • Elif Apohan
  • Yusuf BaranEmail author
Review Article


Sphingolipids including ceramides and its derivatives such as ceramide-1-phosphate, glucosylceramide (GlcCer), and sphingosine-1-phosphate are essential structural components of cell membranes. They now recognized as novel bioeffector molecules which control various aspects of cell growth, proliferation, apoptosis, and drug resistance. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. There are two major classes of sphingolipids. One of them is glycosphingolipids which are synthesized from the hydrophobic molecule, ceramide. GlcCer, generated by glucosylceramide synthase (GCS) that transfers the glucose from UDP-glucose to ceramide, is an important glycosphingolipid metabolic intermediate. GCS regulates the balance between apoptotic ceramide and antiapoptotic GlcCer. Downregulation or inhibition of GCS results in increased apoptosis and decreased drug resistance. The mechanism underlying the drug resistance which develops with increased glucosylceramide expression is associated with P-glycoprotein. In various types of cancers, overexpression of GCS has been observed which renders GCS a good target for the treatment of cancer. This review summarizes our current knowledge on the structure and functions of glucosylceramide synthase and glucosylceramide and on the roles of glucosylceramide synthase in cancer therapy and drug resistance.


Glucosylceramide synthase Cancer therapy Glucosylceramide Drug resistance Ceramide Sphingolipid 


Conflict of interest

The authors do not have any kind of conflict of interest affecting the compilation of the current knowledge in this area for writing this review. We apologize to the ones whose elegant studies are not included here because of space limitations.


  1. 1.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616PubMedCrossRefGoogle Scholar
  2. 2.
    Saddoughi SA, Song P, Ogretmen B (2008) Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem 49:413–440PubMedCrossRefGoogle Scholar
  3. 3.
    Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Bba-Biomembranes 1758:1957–1977PubMedCrossRefGoogle Scholar
  4. 4.
    Tettamanti G, Bassi R, Viani P, Riboni L (2003) Salvage pathways in glycosphingolipid metabolism. Biochimie 85(3–4):423–437PubMedCrossRefGoogle Scholar
  5. 5.
    Ozbayraktar FBK, Ulgen KO (2010) Drug target identification in sphingolipid metabolism by computational systems biology tools: metabolic control analysis and metabolic pathway analysis. J Biomed Inform 43:537–549PubMedCrossRefGoogle Scholar
  6. 6.
    Ekiz HA, Baran Y (2010) Therapeutic applications of bioactive sphingolipids in hematological malignancies. Int J Cancer 127:1497–1506PubMedCrossRefGoogle Scholar
  7. 7.
    Ozbayraktar FB, Ulgen KO (2009) Molecular facets of sphingolipids: mediators of diseases. Biotechnol J 4:1028–1041PubMedCrossRefGoogle Scholar
  8. 8.
    Tyteca D, D’Auria L, Der Smissen PV, Medts T, Carpentier S, Monbaliu JC, de Diesbach P, Courtoy PJ (2010) Three unrelated sphingomyelin analogs spontaneously cluster into plasma membrane micrometric domains. Bba-Biomembranes 1798:909–927PubMedCrossRefGoogle Scholar
  9. 9.
    Patwardhan GA, Liu YY (2011) Sphingolipids and expression regulation of genes in cancer. Prog Lipid Res 50:104–114PubMedCrossRefGoogle Scholar
  10. 10.
    Snook CF, Jones JA, Hannun YA (2006) Sphingolipid-binding proteins. Biochim Biophys Acta 1761:927–946PubMedCrossRefGoogle Scholar
  11. 11.
    Reynolds CP, Maurer BJ, Kolesnick RN (2004) Ceramide synthesis and metabolism as a target for cancer therapy. Cancer Lett 206:169–180PubMedCrossRefGoogle Scholar
  12. 12.
    Sabourdy F, Kedjouar B, Sorli SC, Colie S, Milhas D, Salma Y, Levade T (2008) Functions of sphingolipid metabolism in mammals—lessons from genetic defects. Bba-Mol Cell Biol L 1781:145–183Google Scholar
  13. 13.
    Cuvillier O, Levade T (2003) Enzymes of sphingosine metabolism as potential pharmacological targets for therapeutic intervention in cancer. Pharmacol Res 47:439–445PubMedCrossRefGoogle Scholar
  14. 14.
    Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards M, Cabot M, Merrill AH (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Bba-Biomembranes 1758:1864–1884PubMedCrossRefGoogle Scholar
  15. 15.
    Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Bio 9:139–150CrossRefGoogle Scholar
  16. 16.
    Bartke N, Hannun YA (2009) Bioactive sphingolipids: metabolism and function. J Lipid Res 50(Suppl):S91–S96PubMedCrossRefGoogle Scholar
  17. 17.
    Perry RJ, Ridgway ND (2005) Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 1734:220–234PubMedCrossRefGoogle Scholar
  18. 18.
    Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20:1010–1018PubMedCrossRefGoogle Scholar
  19. 19.
    Dyatlovitskaya EV, Kandyba AG (2006) Role of biologically active sphingolipids in tumor growth. Biochemistry (Moscow) 71:10–17CrossRefGoogle Scholar
  20. 20.
    Delgado A, Casas J, Llebaria A, Abad JL, Fabrias G (2006) Inhibitors of sphingolipid metabolism enzymes. Biochim Biophys Acta 1758:1957–1977PubMedCrossRefGoogle Scholar
  21. 21.
    Senkal CE, Ponnusamy S, Rossi MJ, Bialewski J, Sinha D, Jiang JC, Jazwinski SM, Hannun YA, Ogretmen B (2007) Role of human longevity assurance gene 1 and C18-ceramide in chemotherapy-induced cell death in human head and neck squamous cell carcinomas. Mol Cancer Ther 6:712–722PubMedCrossRefGoogle Scholar
  22. 22.
    Parihar A, Parihar MS, Nazarewicz R, Ghafourifar P (2010) Importance of cytochrome c redox state for ceramide-induced apoptosis of human mammary adenocarcinoma cells. Bba Gen Subjects 1800:646–654CrossRefGoogle Scholar
  23. 23.
    Wang J, Lv XW, Du YG (2009) Potential mechanisms involved in ceramide-induced apoptosis in human colon cancer HT29 cells. Biomed Environ Sci 22:76–85PubMedCrossRefGoogle Scholar
  24. 24.
    Liu YY, Han TY, Yu JY, Bitterman A, Le A, Giuliano AE, Cabot MC (2004) Oligonucleotides blocking glucosylceramide synthase expression selectively reverse drug resistance in cancer cells. J Lipid Res 45:933–940PubMedCrossRefGoogle Scholar
  25. 25.
    Yoshizaki F, Nakayama H, Wahara C, Takamori K, Ogawa H, Iwabuchi K (2008) Role of glycosphingolipid-enriched microdomains in innate immunity: microdomain-dependent phagocytic cell functions. Bba-Gen Subjects 1780:383–392CrossRefGoogle Scholar
  26. 26.
    Hakomori SI (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends. Bba-Gen Subjects 1780:325–346CrossRefGoogle Scholar
  27. 27.
    Bleicher RJ, Cabot MC (2002) Glucosylceramide synthase and apoptosis. Bba Mol Cell Biol L 1585:172–178CrossRefGoogle Scholar
  28. 28.
    Barreto-Bergter E, Pinto MR, Rodrigues ML (2004) Structure and biological functions of fungal cerebrosides. An Acad Bras Cienc 76:67–84PubMedCrossRefGoogle Scholar
  29. 29.
    Maunula S, Bjorkqvist YJE, Slotte JP, Ramstedt B (2007) Differences in the domain forming properties of N-palmitoylated neutral glycosphingolipids in bilayer. Bba-Biomembranes 1768:336–345PubMedCrossRefGoogle Scholar
  30. 30.
    Degroote S, Wolthoorn J, van Meer G (2004) The cell biology of glycosphingolipids. Semin Cell Dev Biol 15:375–387PubMedCrossRefGoogle Scholar
  31. 31.
    Duclos RI (2001) The total syntheses of D-erythro-sphingosine, N-palmitoylsphingosine (ceramide), and glucosylceramide (cerebroside) via an azidosphingosine analog. Chem Phys Lipids 111:111–138PubMedCrossRefGoogle Scholar
  32. 32.
    van Meer G, Holthuis JC (2000) Sphingolipid transport in eukaryotic cells. Biochim Biophys Acta 1486:145–170PubMedCrossRefGoogle Scholar
  33. 33.
    Aerts JMFG, Ghisaidoobe A, Bikker P, de Bruijn ACJ, Godschalk FD, Rogaar E, Guijt MC, Hagens P, Halma JM, van’t Hart SM, Luitjens SB, van Rixel VHS, Wijzenbroek M, Zweegers T, Donker-Koopman WE, Strijland A, Boot R, van der Marel G, Overkleeft HS, van den Berg RJBHN (2011) Identification of potent and selective glucosylceramide synthase inhibitors from a library of N-alkylated iminosugars. Acs Med Chem Lett 2:119–123CrossRefGoogle Scholar
  34. 34.
    Tuuf J, Kjellberg MA, Molotkovsky JG, Hanada K, Mattjus P (2011) The intermembrane ceramide transport catalyzed by CERT is sensitive to the lipid environment. Biochim Biophys Acta 1808:229–235PubMedCrossRefGoogle Scholar
  35. 35.
    Liu YY, Han TY, Giuliano AE, Cabot MC (1999) Expression of glucosylceramide synthase, converting ceramide to glucosylceramide, confers adriamycin resistance in human breast cancer cells. J Biol Chem 274:1140–1146PubMedCrossRefGoogle Scholar
  36. 36.
    Leipelt M, Warnecke D, Zahringer U, Ott C, Muller F, Hube B, Heinz E (2001) Glucosylceramide synthases, a gene family responsible for the biosynthesis of glycosphingolipids in animals, plants, and fungi. J Biol Chem 276:33621–33629PubMedCrossRefGoogle Scholar
  37. 37.
    Hillig I, Leipelt M, Ott C, Zahringer U, Warnecke D, Heinz E (2003) Formation of glucosylceramide and sterol glucoside by a UDP-glucose-dependent glucosylceramide synthase from cotton expressed in Pichia pastoris. FEBS Lett 553:365–369PubMedCrossRefGoogle Scholar
  38. 38.
    Ito M, Komori H (1996) Homeostasis of cell-surface glycosphingolipid content in B16 melanoma cells. Evidence revealed by an endoglycoceramidase. J Biol Chem 271:12655–12660PubMedCrossRefGoogle Scholar
  39. 39.
    Inokuchi J, Jimbo M, Momosaki K, Shimeno H, Nagamatsu A, Radin NS (1990) Inhibition of experimental metastasis of murine Lewis lung carcinoma by an inhibitor of glucosylceramide synthase and its possible mechanism of action. Cancer Res 50:6731–6737PubMedGoogle Scholar
  40. 40.
    Lafont D, Bouchu MN, Girard-Egrot A, Boullanger P (2001) Syntheses and interfacial behaviour of neoglycolipid analogues of glycosyl ceramides. Carbohydr Res 336:181–194PubMedCrossRefGoogle Scholar
  41. 41.
    Miura T, Kajimoto T, Jimbo M, Yamagishi K, Inokuchi JC, Wong CH (1998) Synthesis and evaluation of morpholino- and pyrrolidinosphingolipids as inhibitors of glucosylceramide synthase. Bioorg Med Chem 6:1481–1489PubMedCrossRefGoogle Scholar
  42. 42.
    Chujor CS, Feingold KR, Elias PM, Holleran WM (1998) Glucosylceramide synthase activity in murine epidermis: quantitation, localization, regulation, and requirement for barrier homeostasis. J Lipid Res 39:277–285PubMedGoogle Scholar
  43. 43.
    Abe A, Radin NS, Shayman JA, Wotring LL, Zipkin RE, Sivakumar R, Ruggieri JM, Carson KG, Ganem B (1995) Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res 36:611–621PubMedGoogle Scholar
  44. 44.
    Hillig I, Warnecke D, Heinz E (2005) An inhibitor of glucosylceramide synthase inhibits the human enzyme, but not enzymes from other organisms. Biosci Biotechnol Biochem 69:1782–1785PubMedCrossRefGoogle Scholar
  45. 45.
    Di Sano F, Di Bartolomeo S, Fazi B, Fiorentini C, Matarrese P, Spinedi A, Piacentini M (2002) Antisense to glucosylceramide synthase in human neuroepithelioma affects cell growth but not apoptosis. Cell Death Differ 9:693–695PubMedCrossRefGoogle Scholar
  46. 46.
    Ichikawa S, Hirabayashi Y (1998) Glucosylceramide synthase and glycosphingolipid synthesis. Trends Cell Biol 8:198–202PubMedCrossRefGoogle Scholar
  47. 47.
    Xie P, Shen YF, Shi YP, Ge SM, Gu ZH, Wang J, Mu HJ, Zhang B, Qiao WZ, Xie KM (2008) Overexpression of glucosylceramide synthase in associated with multidrug resistance of leukemia cells. Leuk Res 32:475–480PubMedCrossRefGoogle Scholar
  48. 48.
    Compain P, Martin OR, Boucheron C, Godin G, Yu L, Ikeda K, Asano N (2006) Design and synthesis of highly potent and selective pharmacological chaperones for the treatment of Gaucher’s disease. ChemBioChem 7:1356–1359PubMedCrossRefGoogle Scholar
  49. 49.
    Basu S, Kaufman B, Roseman S (1968) Enzymatic synthesis of ceramide-glucose and ceramide-lactose by glycosyltransferases from embryonic chicken brain. J Biol Chem 243:5802–5804PubMedGoogle Scholar
  50. 50.
    Huwiler A, Kolter T, Pfeilschifter J, Sandhoff K (2000) Physiology and pathophysiology of sphingolipid metabolism and signaling. Biochim Biophys Acta 1485:63–99PubMedCrossRefGoogle Scholar
  51. 51.
    Liu Y, Xie KM, Yang GQ, Bai XM, Shi YP, Mu HJ, Qiao WZ, Zhang B, Xie P (2010) GCS induces multidrug resistance by regulating apoptosis-related genes in K562/AO2 cell line. Cancer Chemother Pharmacol 66:433–439PubMedCrossRefGoogle Scholar
  52. 52.
    Turzanski J, Grundy M, Shang S, Russell N, Pallis M (2005) P-glycoprotein is implicated in the inhibition of ceramide-induced apoptosis in TF-1 acute myeloid leukemia cells by modulation of the glucosylceramide synthase pathway. Exp Hematol 33:62–72PubMedCrossRefGoogle Scholar
  53. 53.
    Fujikawa K, Nohara T, Imamura A,Ando H, Ishida H, Kiso M (2010) A cyclic glucosyl ceramide acceptor as a versatile building block for complex ganglioside synthesis. Tetrahedron Lett 51:1126–1130Google Scholar
  54. 54.
    Gouaze V, Yu JY, Bleicher RJ, Han TY, Liu YY, Wang H, Gottesman MM, Bitterman A, Giuliano AE, Cabot MC (2004) Overexpression of glucosylceramide synthase and P-glycoprotein in cancer cells selected for resistance to natural product chemotherapy. Mol Cancer Ther 3:633–639PubMedGoogle Scholar
  55. 55.
    Sietsma H, Veldman RJ, Kok JW (2001) The involvement of sphingolipids in multidrug resistance. J Membr Biol 181:153–162PubMedGoogle Scholar
  56. 56.
    Lucci A, Cho WI, Han TY, Giuliano AE, Morton DL, Cabot MC (1998) Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res 18:475–480PubMedGoogle Scholar
  57. 57.
    Itoh M, Kitano T, Watanabe M, Kondo T, Yabu T, Taguchi Y, Iwai K, Tashima M, Uchiyama T, Okazaki T (2003) Possible role of ceramide as an indicator of chemoresistance: decrease of the ceramide content via activation of glucosylceramide synthase and sphingomyelin synthase in chemoresistant leukemia. Clin Cancer Res 9:415–423PubMedGoogle Scholar
  58. 58.
    Lavie Y, Cao H, Volner A, Lucci A, Han TY, Geffen V, Giuliano AE, Cabot MC (1997) Agents that reverse multidrug resistance, tamoxifen, verapamil, and cyclosporin A, block glycosphingolipid metabolism by inhibiting ceramide glycosylation in human cancer cells. J Biol Chem 272:1682–1687PubMedCrossRefGoogle Scholar
  59. 59.
    Liu YY, Han TY, Giuliano AE, Cabot MC (2001) Ceramide glycosylation potentiates cellular multidrug resistance. FASEB J 15:719–730PubMedCrossRefGoogle Scholar
  60. 60.
    Lavie Y, Cao H, Bursten SL, Giuliano AE, Cabot MC (1996) Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem 271:19530–19536PubMedCrossRefGoogle Scholar
  61. 61.
    Chapman JV, Gouaze-Andersson V, Cabot MC (2010) Expression of P-glycoprotein in HeLa cells confers resistance to ceramide cytotoxicity. Int J Oncol 37:1591–1597PubMedGoogle Scholar
  62. 62.
    Gouaze-Andersson V, Yu JY, Kreitenberg AJ, Bielawska A, Giuliano AE, Cabot MC (2007) Ceramide and glucosylceramide upregulate expression of the multidrug resistance gene MDR1 in cancer cells. Biochim Biophys Acta 1771:1407–1417PubMedCrossRefGoogle Scholar
  63. 63.
    Liu YY, Yu JY, Yin D, Patwardhan GA, Gupta V, Hirabayashi Y, Holleran WM, Giuliano AE, Jazwinski SM, Gouaze-Andersson V, Consoli DP, Cabot MC (2008) A role for ceramide in driving cancer cell resistance to doxorubicin. FASEB J 22:2541–2551PubMedCrossRefGoogle Scholar
  64. 64.
    Albi MVME (2008) Sphingolipid metabolism inhibitors and cell function. Open Enzym Inhib J 1:72–79CrossRefGoogle Scholar
  65. 65.
    van Vlerken LE, Duan Z, Seiden MV, Amiji MM (2007) Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer. Cancer Res 67:4843–4850PubMedCrossRefGoogle Scholar
  66. 66.
    Siddiqui A, Patwardhan GA, Liu YY, Nazzal S (2010) Mixed backbone antisense glucosylceramide synthase oligonucleotide (MBO-asGCS) loaded solid lipid nanoparticles: in vitro characterization and reversal of multidrug resistance in NCI/ADR-RES cells. Int J Pharm 400:251–259PubMedCrossRefGoogle Scholar
  67. 67.
    Patwardhan GA, Zhang QJ, Yin D, Gupta V, Bao J, Senkal CE, Ogretmen B, Cabot MC, Shah GV, Sylvester PW, Jazwinski SM, Liu YY (2009) A new mixed-backbone oligonucleotide against glucosylceramide synthase sensitizes multidrug-resistant tumors to apoptosis. PLoS ONE 4:e6938PubMedCrossRefGoogle Scholar
  68. 68.
    Sun Y, Zhang T, Gao P, Meng B, Gao Y, Wang X, Zhang J, Wang H, Wu X, Zheng W, Zhou G (2010) Targeting glucosylceramide synthase downregulates expression of the multidrug resistance gene MDR1 and sensitizes breast carcinoma cells to anticancer drugs. Breast Cancer Res Treat 121:591–599PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang X, Li J, Qiu Z, Gao P, Wu X, Zhou G (2009) Co-suppression of MDR1 (multidrug resistance 1) and GCS (glucosylceramide synthase) restores sensitivity to multidrug resistance breast cancer cells by RNA interference (RNAi). Cancer Biol Ther 8:1117–1121PubMedCrossRefGoogle Scholar
  70. 70.
    Baran Y, Bielawski J, Ogretmen B, Gunduz U (2011) Inhibition of glucosylceramide synthase by PDMP resensitizes multidrug-resistant human chronic myeloid leukemia cells to Imatinib. J Can Res Clin Oncol 137(10):1535–1544CrossRefGoogle Scholar
  71. 71.
    Kok JW, Sietsma H (2004) Sphingolipid metabolism enzymes as targets for anticancer therapy. Curr Drug Targets 5:375–382PubMedCrossRefGoogle Scholar
  72. 72.
    Radin NS (1994) Rationales for cancer chemotherapy with PDMP, a specific inhibitor of glucosylceramide synthase. Mol Chem Neuropathol 21:111–127PubMedCrossRefGoogle Scholar
  73. 73.
    Maurer BJ, Metelitsa LS, Seeger RC, Cabot MC, Reynolds CP (1999) Increase of ceramide and induction of mixed apoptosis/necrosis by N-(4-hydroxyphenyl)- retinamide in neuroblastoma cell lines. J Natl Cancer Inst 91:1138–1146PubMedCrossRefGoogle Scholar
  74. 74.
    Radin NS (1999) Chemotherapy by slowing glycosphingolipid synthesis. Biochem Pharmacol 57:589–595PubMedCrossRefGoogle Scholar
  75. 75.
    Weiss M, Hettmer S, Smith P, Ladisch S (2003) Inhibition of melanoma tumor growth by a novel inhibitor of glucosylceramide synthase. Cancer Res 63:3654–3658PubMedGoogle Scholar
  76. 76.
    Di Sano F, Fazi B, Citro G, Lovat PE, Cesareni G, Piacentini M (2003) Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells. Cancer Res 63:3860–3865PubMedGoogle Scholar
  77. 77.
    Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC (2005) Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Res 65:3861–3867PubMedCrossRefGoogle Scholar
  78. 78.
    Dijkhuis AJ, Klappe K, Jacobs S, Kroesen BJ, Kamps W, Sietsma H, Kok JW (2006) PDMP sensitizes neuroblastoma to paclitaxel by inducing aberrant cell cycle progression leading to hyperploidy. Mol Cancer Ther 5:593–601PubMedCrossRefGoogle Scholar
  79. 79.
    Furlong SJ, Ridgway ND, Hoskin DW (2008) Modulation of ceramide metabolism in T-leukemia cell lines potentiates apoptosis induced by the cationic antimicrobial peptide bovine lactoferricin. Int J Oncol 32:537–544PubMedGoogle Scholar
  80. 80.
    Kraveka JM, Li L, Szulc ZM, Bielawski J, Ogretmen B, Hannun YA, Obeid LM, Bielawska A (2007) Involvement of dihydroceramide desaturase in cell cycle progression in human neuroblastoma cells. J Biol Chem 282:16718–16728PubMedCrossRefGoogle Scholar
  81. 81.
    Liu YY, Gupta V, Patwardhan GA, Bhinge K, Zhao Y, Bao J, Mehendale H, Cabot MC, Li YT, Jazwinski SM (2010) Glucosylceramide synthase upregulates MDR1 expression in the regulation of cancer drug resistance through cSrc and beta-catenin signaling. Mol Cancer 9:145PubMedCrossRefGoogle Scholar
  82. 82.
    Rath G, Schneider C, Langlois B, Sartelet H, Morjani H, Btaouri HE, Dedieu S, Martiny L (2009) De novo ceramide synthesis is responsible for the anti-tumor properties of camptothecin and doxorubicin in follicular thyroid carcinoma. Int J Biochem Cell Biol 41:1165–1172PubMedCrossRefGoogle Scholar
  83. 83.
    Liu YY, Patwardhan GA, Bhinge K, Gupta V, Gu X, Jazwinski SM (2011) Suppression of glucosylceramide synthase restores p53-dependent apoptosis in mutant p53 cancer cells. Cancer Res 71:2276–2285PubMedCrossRefGoogle Scholar
  84. 84.
    Cakir Z, Saydam G, Sahin F, Baran Y (2011) The roles of bioactive sphingolipids in resveratrol-induced apoptosis in HL60 acute myeloid leukemia cells. J Cancer Res Clin Oncol 137:279–286PubMedCrossRefGoogle Scholar
  85. 85.
    Kartal M, Saydam G, Sahin F, Baran Y (2011) Resveratrol triggers apoptosis by increasing intracellular concentrations of ceramides in chronic myeloid leukemia cells. Nutrit Cancer An Internat J 63(4):637–644CrossRefGoogle Scholar
  86. 86.
    Baran Y, Salas A, Senkal CE, Gunduz U, Bielawski J, Obeid LM, Ogretmen B (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934PubMedCrossRefGoogle Scholar
  87. 87.
    Camgoz A, Ural AU, Avcu F, Baran Y (2011) Targeting ceramide metabolism to increase intracellular concentrations of apoptotic ceramide increased cytotoxic effects of nilotinib in human chronic myeloid leukemia cells. Leuk and Lymph 52(8):1574–1584CrossRefGoogle Scholar
  88. 88.
    Gencer AB, Ural AU, Avcu F, Baran Y (2011) Dasatinib induces apoptosis through increasing de novo generation or accumulation of ceramides in human K562 and Meg-01 chronic myeloid leukemia cells. Annals of Hemat 90(11):1265–1275CrossRefGoogle Scholar
  89. 89.
    Bassoy EY, Baran Y (2012) Bioactive sphingolipids in docetaxel-induced apoptosis in human prostate cancer cells. Biomed Pharmacot 66(2):103–110CrossRefGoogle Scholar
  90. 90.
    Olshefski RS, Ladisch S (2001) Glucosylceramide synthase inhibition enhances vincristine-induced cytotoxicity. Int J Cancer 93:131–138PubMedCrossRefGoogle Scholar
  91. 91.
    Xie P, Shen YF, Shi YP, Ge SM, Gu ZH, Wang J, Mu HJ, Zhang B, Qiao WZ, Xie KM (2008) Overexpression of glucosylceramide synthase in associated with multidrug resistance of leukemia cells. Leuk Res 32:475–480PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Melis Kartal Yandım
    • 1
  • Elif Apohan
    • 1
    • 2
  • Yusuf Baran
    • 1
    Email author
  1. 1.Department of Molecular Biology and Genetics, Faculty of Scienceİzmir Institute of TechnologyUrla, IzmirTurkey
  2. 2.Department of Biology, Faculty of Art and Scienceİnönü UniversityMalatyaTurkey

Personalised recommendations