Cancer Chemotherapy and Pharmacology

, Volume 70, Issue 4, pp 591–601 | Cite as

A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer

  • Brendan C. Bender
  • Franziska Schaedeli-Stark
  • Reinhold Koch
  • Amita Joshi
  • Yu-Waye Chu
  • Hope Rugo
  • Ian E. Krop
  • Sandhya Girish
  • Lena E. Friberg
  • Manish Gupta
Original Article



Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in the development for the treatment of human epidermal growth factor receptor 2-positive cancers. Thrombocytopenia (TCP) is the dose-limiting toxicity of T-DM1. A semimechanistic population pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize the effect of T-DM1 on patient platelet counts.


A PK/PD model with transit compartments that mimic platelet development and circulation was fit to concentration-platelet–time course data from two T-DM1 single-agent studies (TDM3569g; N = 52 and TDM4258g; N = 112). NONMEM® 7 software was used for model development. Data from a separate phase II study (TDM4374g; N = 110) were used for model evaluation. Patient baseline characteristics were evaluated as covariates of model PD parameters.


The model described the platelet data well and predicted the incidence of grade ≥3 TCP. The model predicted that with T-DM1 3.6 mg/kg given every 3 weeks (q3w), the lowest platelet nadir would occur after the first dose. Also predicted was a patient subgroup (46 %) having variable degrees of downward drifting platelet–time profiles, which were predicted to stabilize by the eighth treatment cycle to platelet counts above grade 3 TCP. Baseline characteristics were not significant covariates of PD parameters in the model.


This semimechanistic PK/PD model accurately captures the cycle 1 platelet nadir, the downward drift noted in some patient platelet–time profiles, and the ~8 % incidence of grade ≥3 TCP with T-DM1 3.6 mg/kg q3w. This model supports T-DM1 3.6 mg/kg q3w as a well-tolerated dose with minimal dose delays or reductions for TCP.


Trastuzumab emtansine T-DM1 Thrombocytopenia Population pharmacokinetic/pharmacodynamic model Semimechanistic Cumulative TCP 



The study was funded by Genentech, Inc. Support for third-party writing assistance was provided by Genentech, Inc.


  1. 1.
    Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab emtansine, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290. doi: 10.1158/0008-5472.CAN-08-1776 PubMedCrossRefGoogle Scholar
  2. 2.
    Krop IE, Beeram M, Modi S et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704. doi: 10.1200/JCO.2009.26.2071 PubMedCrossRefGoogle Scholar
  3. 3.
    Burris HA III, Rugo H, Vukelja SJ et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29:398–405. doi: 10.1200/JCO.2010.29.5865 PubMedCrossRefGoogle Scholar
  4. 4.
    Krop I, LoRusso P, Miller KD et al (2010) A phase II study of trastuzumab-DM1 (T-DM1), a novel HER2 antibody-drug conjugate, in patients with HER2+ metastatic breast cancer who were previously treated with an anthracycline, a taxane, capecitabine, lapatinib, and trastuzumab. Presented at European Society for Medical Oncology Congress, October 8–12, Milan, Italy (abstract 277O)Google Scholar
  5. 5.
    Gupta M, LoRusso PM, Wang B et al (2011) Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol. doi: 10.1177/0091270011403742 Google Scholar
  6. 6.
    Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721. doi: 10.1200/JCO.2002.02.140 PubMedCrossRefGoogle Scholar
  7. 7.
    Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Invest New Drugs 21:183–194PubMedCrossRefGoogle Scholar
  8. 8.
    van Kesteren C, Zandvliet AS, Karlsson MO et al (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 23:225–234PubMedCrossRefGoogle Scholar
  9. 9.
    Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD (2006) Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57:427–435. doi: 10.1007/s00280-005-0035-2 PubMedCrossRefGoogle Scholar
  10. 10.
    Joerger M, Huitema AD, Richel DJ et al (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13:6410–6418. doi: 10.1158/1078-0432.CCR-07-0064 PubMedCrossRefGoogle Scholar
  11. 11.
    Schmitt A, Gladieff L, Laffont C et al (2010) Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol 28:4568–4574. doi: 10.1200/JCO.2010.29.3597 PubMedCrossRefGoogle Scholar
  12. 12.
    Gupta P, Friberg LE, Karlsson MO, Krishnaswami S, French J (2010) A semi-mechanistic model of CP-690,550-induced reduction in neutrophil counts in patients with rheumatoid arthritis. J Clin Pharmacol 50:679–687. doi: 10.1177/0091270009346060 PubMedCrossRefGoogle Scholar
  13. 13.
    Beal SL, Boeckman AJ, Sheiner LB (1992) NONMEM users guide, part IV. Regents of California, San Francisco. Accessed 16 Dec 2011
  14. 14.
    Khandelwal A, Harling K, Jonsson EN, Hooker A, Karlsson M (2011) A fast method for testing covariates in population PK/PD models. AAPSJ 13:464–472. doi: 10.1208/s12248-011-9289-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Hurvitz SA, Dirix L, Kocsis J et al (2011) Trastuzumab emtansine (T-DM1) versus trastuzumab + docetaxel in previously untreated HER2-positive metastatic breast cancer (MBC): primary results of a randomized, multicenter, open-label phase II study (TDM4450g/BO21976). Presented at European Multidisciplinary Cancer Congress, September 23–27, Stockholm, Sweden (abstract 5001)Google Scholar
  16. 16.
    Perry MC, McKinney MF (2008) Chemotherapeutic agents: trastuzumab (herceptin). In: Perry MC (ed) The chemotherapy source book, 4th edn. Lippincott Williams & Wilkins, Philadelphia, p 629Google Scholar
  17. 17.
    Blum RH, Kahlert T (1978) Maytansine: a phase I study of an ansa macrolide with antitumor activity. Cancer Treat Rep 62:435–438PubMedGoogle Scholar
  18. 18.
    Blum RH, Wittenberg BK, Canellos GP et al (1978) A therapeutic trial of maytansine. Cancer Clin Trials 1:113–117PubMedGoogle Scholar
  19. 19.
    Rodon J, Garrison M, Hammond LA et al (2008) Cantuzumab mertansine in a three-times a week schedule: a phase I and pharmacokinetic study. Cancer Chemother Pharmacol 62:911–919. doi: 10.1007/s00280-007-0672-8 PubMedCrossRefGoogle Scholar
  20. 20.
    Tolcher AW, Ochoa L, Hammond LA et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222. doi: 10.1200/JCO.2003.05.137 PubMedCrossRefGoogle Scholar
  21. 21.
    Galsky MD, Eisenberger M, Moore-Cooper S et al (2008) Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol 26:2147–2154. doi: 10.1200/JCO.2007.15.0532 PubMedCrossRefGoogle Scholar
  22. 22.
    O’Shaughnessy JA, Venzon DJ, Gossard M et al (1995) A phase I study of sequential versus concurrent interleukin-3 and granulocyte-macrophage colony-stimulating factor in advanced breast cancer patients treated with FLAC (5-fluorouracil, leucovorin, doxorubicin, cyclophosphamide) chemotherapy. Blood 86:2913–2921PubMedGoogle Scholar
  23. 23.
    Maze R, Moritz T, Williams DA (1994) Increased survival and multilineage hematopoietic protection from delayed and severe myelosuppressive effects of a nitrosourea with recombinant interleukin-11. Cancer Res 54:4947–4951PubMedGoogle Scholar
  24. 24.
    National Cancer Institute (2006) Common terminology criteria for adverse events v3.0 (CTCAE). Accessed 20 June 2011

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Brendan C. Bender
    • 1
    • 2
  • Franziska Schaedeli-Stark
    • 3
  • Reinhold Koch
    • 3
  • Amita Joshi
    • 1
  • Yu-Waye Chu
    • 1
  • Hope Rugo
    • 4
  • Ian E. Krop
    • 5
  • Sandhya Girish
    • 1
  • Lena E. Friberg
    • 2
  • Manish Gupta
    • 1
    • 6
  1. 1.Genentech, Inc.South San FranciscoUSA
  2. 2.Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
  3. 3.F. Hoffman-La Roche Ltd.BaselSwitzerland
  4. 4.UCSF Helen Diller Family Comprehensive Cancer CenterSan FranciscoUSA
  5. 5.Dana–Farber Cancer InstituteBostonUSA
  6. 6.Bristol–Myers SquibbLawrencevilleUSA

Personalised recommendations