Cancer Chemotherapy and Pharmacology

, Volume 70, Issue 1, pp 95–102 | Cite as

A phase I study of bevacizumab, everolimus and panitumumab in advanced solid tumors

  • Gordana Vlahovic
  • Kellen L. Meadows
  • Hope E. Uronis
  • Michael A. Morse
  • Gerard C. Blobe
  • Richard F. Riedel
  • S. Yousuf Zafar
  • Angeles Alvarez-Secord
  • Jon Gockerman
  • Alexander N. Starodub
  • Neal E. Ready
  • Elizabeth L. Anderson
  • Johanna C. Bendell
  • Herbert I. Hurwitz
Original Article

Abstract

Purpose

Preclinical data suggest concurrent inhibition of VEGF, mTOR and EGFR pathways may augment antitumor and antiangiogenic effects compared to inhibition of each pathway alone. This study evaluated the maximum tolerated dose/recommended phase II dose and safety and tolerability of bevacizumab, everolimus and panitumumab drug combination.

Methods

Subjects with advanced solid tumors received escalating doses of everolimus and flat dosing of panitumumab at 4.8 mg/kg and bevacizumab at 10 mg/kg every 2 weeks. Dose-limiting toxicities (DLTs) were assessed in cycle 1; toxicity evaluation was closely monitored throughout treatment. Treatment continued until disease progression or undesirable toxicity.

Results

Thirty-two subjects were evaluable for toxicity; 31 subjects were evaluable for tumor response. DLTs were observed in cohorts with everolimus at 10 and 5 mg daily and included grade 3 mucositis, skin rash and thrombocytopenia. Therefore, everolimus was dose-reduced to 5 mg three times weekly, which improved the tolerability of the treatment regimen. Common adverse events were skin rash/pruritus (91 %), mucositis/stomatitis (75 %), hypomagnesemia (72 %), hypocalcemia (56 %) and hypokalemia (50 %). There were 3 partial responses; an additional 10 subjects had stable disease ≥6 months. Three subjects with ovarian cancer and one with endometrial cancer achieved prolonged disease control ranging from 11 to >40 months.

Conclusions

The recommended phase II dose is everolimus at 5 mg three times weekly plus panitumumab at 4.8 mg/kg and bevacizumab at 10 mg/kg every 2 weeks. This dosing regimen has an acceptable safety and tolerability profile and appears to have moderate the clinical activity in refractory tumors.

Keywords

Bevacizumab Everolimus Panitumumab Phase I Advanced cancer 

References

  1. 1.
    Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol 27:2278–2287PubMedCrossRefGoogle Scholar
  2. 2.
    Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027PubMedCrossRefGoogle Scholar
  3. 3.
    Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174PubMedCrossRefGoogle Scholar
  4. 4.
    Buck E, Eyzaguirre A, Haley JD, Gibson NW, Cagnoni P, Iwata KK (2006) Inactivation of Akt by the epidermal growth factor receptor inhibitor erlotinib is mediated by HER-3 in pancreatic and colorectal tumor cell lines and contributes to erlotinib sensitivity. Mol Cancer Ther 5:2051–2059PubMedCrossRefGoogle Scholar
  5. 5.
    Buck E, Eyzaguirre A, Brown E, Petti F, McCormack S, Haley JD, Iwata KK, Gibson NW, Griffin G (2006) Rapamycin synergizes with the epidermal growth factor receptor inhibitor erlotinib in non-small-cell lung, pancreatic, colon, and breast tumors. Mol Cancer Ther 5:2676–2684PubMedCrossRefGoogle Scholar
  6. 6.
    Goudar RK, Shi Q, Hjelmeland MD, Keir ST, McLendon RE, Wikstrand CJ, Reese ED, Conrad CA, Traxler P, Lane HA, Reardon DA, Cavenee WK, Wang XF, Bigner DD, Friedman HS, Rich JN (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4:101–112PubMedGoogle Scholar
  7. 7.
    O’Reilly T, Lane HA, Wood JM, Schnell C, Littlewood-Evans A, Brueggen J, McSheehy PM (2010) Everolimus and PTK/ZK show synergistic growth inhibition in the orthotopic BL16/BL6 murine melanoma model. Cancer Chemother Pharmacol. Published online 30 May 2010Google Scholar
  8. 8.
    Rao RD, Mladek AC, Lamont JD, Goble JM, Erlichman C, James CD, Sarkaria JN (2005) Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7:921–929PubMedCrossRefGoogle Scholar
  9. 9.
    LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA (2008) Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat 11:32–50PubMedCrossRefGoogle Scholar
  10. 10.
    Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049PubMedCrossRefGoogle Scholar
  11. 11.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  12. 12.
    Guba M, von Breitenbuch P, Steinbauer M, Koehl G, Flegel S, Hornung M, Bruns CJ, Zuelke C, Farkas S, Anthuber M, Jauch KW, Geissler EK (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8:128–135PubMedCrossRefGoogle Scholar
  13. 13.
    Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F, Giaccia AJ, Abraham RT (2002) Regulation of hypoxia-inducible factor 1 alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22:7004–7014PubMedCrossRefGoogle Scholar
  14. 14.
    Yu Y, Sato JD (1999) MAP kinases, phosphatidylinositol 3-kinase, and p70 S6 kinase mediate the mitogenic response of human endothelial cells to vascular endothelial growth factor. J Cell Physiol 178:235–246PubMedCrossRefGoogle Scholar
  15. 15.
    Chiang GG, Abraham RT (2007) Targeting the mTOR signaling network in cancer. Trends Mol Med 13:433–442PubMedCrossRefGoogle Scholar
  16. 16.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22PubMedCrossRefGoogle Scholar
  17. 17.
    Lane HA, Wood JM, McSheehy PM, Allegrini PR, Boulay A, Brueggen J, Littlewood-Evans A, Maira SM, Martiny-Baron G, Schnell CR, Sini P, O’Reilly T (2009) mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor. Clin Cancer Res 15:1612–1622PubMedCrossRefGoogle Scholar
  18. 18.
    Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16PubMedCrossRefGoogle Scholar
  19. 19.
    Ellis LM (2004) Epidermal growth factor receptor in tumor angiogenesis. Hematol Oncol Clin North Am 18:1007–1021, viiiGoogle Scholar
  20. 20.
    Scaltriti M, Baselga J (2006) The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res 12:5268–5272PubMedCrossRefGoogle Scholar
  21. 21.
    Hainsworth JD, Sosman JA, Spigel DR, Edwards DL, Baughman C, Greco A (2005) Treatment of metastatic renal cell carcinoma with a combination of bevacizumab and erlotinib. J Clin Oncol 23:7889–7896PubMedCrossRefGoogle Scholar
  22. 22.
    Saltz LB, Rosen LS, Marshall JL, Belt RJ, Hurwitz HI, Eckhardt SG, Bergsland EK, Haller DG, Lockhart AC, Rocha Lima CM, Huang X, DePrimo SE, Chow-Maneval E, Chao RC, Lenz HJ (2007) Phase II trial of sunitinib in patients with metastatic colorectal cancer after failure of standard therapy. J Clin Oncol 25:4793–4799PubMedCrossRefGoogle Scholar
  23. 23.
    Wu W, Onn A, Isobe T, Itasaka S, Langley RR, Shitani T, Shibuya K, Komaki R, Ryan AJ, Fidler IJ, Herbst RS, O’Reilly MS (2007) Targeted therapy of orthotopic human lung cancer by combined vascular endothelial growth factor and epidermal growth factor receptor signaling blockade. Mol Cancer Ther 6:471–483PubMedCrossRefGoogle Scholar
  24. 24.
    Herbst RS, Johnson DH, Mininberg E, Carbone DP, Henderson T, Kim ES, Blumenschein G Jr, Lee JJ, Liu DD, Truong MT, Hong WK, Tran H, Tsao A, Xie D, Ramies DA, Mass R, Seshagiri S, Eberhard DA, Kelley SK, Sandler A (2005) Phase I/II trial evaluating the anti-vascular endothelial growth factor monoclonal antibody bevacizumab in combination with the HER-1/epidermal growth factor receptor tyrosine kinase inhibitor erlotinib for patients with recurrent non-small-cell lung cancer. J Clin Oncol 23:2544–2555PubMedCrossRefGoogle Scholar
  25. 25.
    Tabernero J (2007) The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 5:203–220PubMedCrossRefGoogle Scholar
  26. 26.
    Bullock KE, Petros WP, Younis I, Uronis HE, Morse MA, Blobe GC, Zafar SY, Gockerman JP, Lager JJ, Truax R, Meadows KL, Howard LA, O’Neill MM, Broadwater G, Hurwitz HI, Bendell JC (2011) A phase I study of bevacizumab (B) in combination with everolimus (E) and erlotinib (E) in advanced cancer (BEE). Cancer Chemother Pharmacol 67:465–474PubMedCrossRefGoogle Scholar
  27. 27.
    Simon R, Freidlin B, Rubinstein L, Arbuck SG, Collins J, Christian MC (1997) Accelerated titration designs for phase I clinical trials in oncology. J Natl Cancer Inst 89:1138–1147PubMedCrossRefGoogle Scholar
  28. 28.
    Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L, Verweij J, Van Glabbeke M, van Oosterom AT, Christian MC, Gwyther SG (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  29. 29.
    Common Terminology Criteria for Adverse Events (CTCAE) Version 3.0. National Institute of HealthGoogle Scholar
  30. 30.
    Cataldo VD, Gibbons DL, Perez-Soler R, Quintas-Cardama A (2011) Treatment of non-small-cell lung cancer with erlotinib or gefitinib. N Engl J Med 364:947–955PubMedCrossRefGoogle Scholar
  31. 31.
    Huynh H, Teo CC, Soo KC (2007) Bevacizumab and rapamycin inhibit tumor growth in peritoneal model of human ovarian cancer. Mol Cancer Ther 6:2959–2966PubMedCrossRefGoogle Scholar
  32. 32.
    Mabuchi S, Altomare DA, Connolly DC, Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR (2007) RAD001 (everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67:2408–2413PubMedCrossRefGoogle Scholar
  33. 33.
    Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102PubMedCrossRefGoogle Scholar
  34. 34.
    Yap TA, Carden CP, Kaye SB (2009) Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer 9:167–181PubMedCrossRefGoogle Scholar
  35. 35.
    Terakawa N, Kanamori Y, Yoshida S (2003) Loss of PTEN expression followed by Akt phosphorylation is a poor prognostic factor for patients with endometrial cancer. Endocr Relat Cancer 10:203–208PubMedCrossRefGoogle Scholar
  36. 36.
    Mutter GL, Lin MC, Fitzgerald JT, Kum JB, Baak JP, Lees JA, Weng LP, Eng C (2000) Altered PTEN expression as a diagnostic marker for the earliest endometrial precancers. J Natl Cancer Inst 92:924–930PubMedCrossRefGoogle Scholar
  37. 37.
    Kanamori Y, Kigawa J, Itamochi H, Shimada M, Takahashi M, Kamazawa S, Sato S, Akeshima R, Terakawa N (2001) Correlation between loss of PTEN expression and Akt phosphorylation in endometrial carcinoma. Clin Cancer Res 7:892–895PubMedGoogle Scholar
  38. 38.
    Clinicaltrials.gov, NCT01031381 Study of RAD001 and Bevacizumab in Recurrent Ovarian, Peritoneal, and Fallopian Tube Cancer (RADBEV)Google Scholar
  39. 39.
    Clinicaltrials.gov, NCT01010126 temsirolimus and bevacizumab in treating patients with locally advanced, recurrent, metastatic, or progressive endometrial cancer, ovarian epithelial cancer, liver cancer, islet cell cancer, or carcinoid tumorGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Gordana Vlahovic
    • 1
  • Kellen L. Meadows
    • 1
  • Hope E. Uronis
    • 1
  • Michael A. Morse
    • 1
  • Gerard C. Blobe
    • 1
  • Richard F. Riedel
    • 1
  • S. Yousuf Zafar
    • 1
  • Angeles Alvarez-Secord
    • 1
  • Jon Gockerman
    • 1
  • Alexander N. Starodub
    • 1
    • 2
  • Neal E. Ready
    • 1
  • Elizabeth L. Anderson
    • 1
  • Johanna C. Bendell
    • 1
    • 3
  • Herbert I. Hurwitz
    • 1
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.Goshen Center for Cancer CareGoshenUSA
  3. 3.Sarah Cannon Research InstituteNashvilleUSA

Personalised recommendations