Cancer Chemotherapy and Pharmacology

, Volume 69, Issue 3, pp 691–696 | Cite as

The role of MTHFR and RFC1 polymorphisms on toxicity and outcome of adult patients with hematological malignancies treated with high-dose methotrexate followed by leucovorin rescue

  • Patrizia Chiusolo
  • Sabrina Giammarco
  • Silvia Bellesi
  • Elisabetta Metafuni
  • Nicola Piccirillo
  • Daniela De Ritis
  • Sara Marietti
  • Sorà Federica
  • Luca Laurenti
  • Luana Fianchi
  • Stefan Hohaus
  • Leone Giuseppe
  • Simona Sica
Original Article

Abstract

Purpose

In the last years, the influence of different genes involved in metabolism of chemotherapeutic agents has been studied. Methotrexate (MTX) is a key compound of chemotherapeutic regimens used in the treatment of acute lymphoblastic leukemia (ALL), primary central nervous system lymphoma (PCNSL) and Burkitt’s lymphomas (BL). This study aims to evaluate the role of MTHFR C677T and A1298C polymorphisms and G80A reduced folate carrier gene (RFC1) in a cohort of adult patients with lymphoproliferative malignancies submitted to high-dose MTX followed by leucovorin rescue.

Methods

We performed the analysis of these polymorphisms on genomic DNA with RFLP–PCR.

Results

Patients carrying MTHFR A1298C variant showed decreased hepatic and hematological toxicity (P = 0.03). Overall survival (OS) and progression-free survival (PFS) between homozygous wild-type and variant patients for the RFC1 G80A were significantly different (P = 0.035 and P = 0.02, respectively). A significant correlation between hematological toxicity and age (P = 0.003) was observed. There was no significant influence of MTHFR C677T genotype on toxicity, OS and PFS.

Conclusions

Leucovorin rescue given after high-dose MTX probably accounts for the lack of influence of C677T polymorphism. To better define a role of RFC1 polymorphism on patients outcome, it would be worthwhile to perform a study on intracellular MTX level and RFC1 substrate binding affinities in different genotypes.

Keywords

High-dose methotrexate MTHFR polymorphisms RFC1 polymorphisms Lymphoproliferative diseases Toxicity Outcome 

Notes

Acknowledgments

This work was supported by Fondi di Ricerca Linea D1 progetti di ricerca 2009.

Conflict of interest

None.

References

  1. 1.
    Blasco H, Senecal D, Le Gouge A et al (2010) Influence of methotrexate exposure on outcome in patients treated with MBVP chemotherapy for primary central nervous system lymphoma. Br J Clin Pharmacol 70(3):367–375PubMedCrossRefGoogle Scholar
  2. 2.
    Yustein JT, Dang CV (2007) Biology and treatment of Burkitt’s lymphoma. Curr Opin in Hematol 14(4):375–381CrossRefGoogle Scholar
  3. 3.
    Magrath I, Adde M, Shad A, Venzon D et al (1996) Adults and children with small non-cleaved-cell lymphoma have a similar excellent outcome when treated with the same chemotherapy regimen. J Clin Oncol 14(3):925–934PubMedGoogle Scholar
  4. 4.
    Bailey LB, Gregory JF (1999) Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr 129(5):919–922PubMedGoogle Scholar
  5. 5.
    Ueland PM, Hustad S, Schneede J et al (2001) Biological and clinical implications of the MTHFR C677T polymorphism. Trends Pharmacol Sci 22(4):195–201PubMedCrossRefGoogle Scholar
  6. 6.
    Chango A, Emery-Fillon N, de Courcy GP et al (2000) A polymorphism (80G→A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70(4):310–315PubMedCrossRefGoogle Scholar
  7. 7.
    De Marco P, Calevo MG, Moroni A et al (2003) Reduced folate carrier polymorphism (80A→G) and neural tube defects. Eur J Hum Genet 11(3):245–252PubMedCrossRefGoogle Scholar
  8. 8.
    Shaw GM, Lammer EJ, Zhu H et al (2002) Maternal periconceptional vitamin use, genetic variation of infant reduced folate carrier (A80G), and risk of spina bifida. Am J Med Genet 108(1):1–6PubMedCrossRefGoogle Scholar
  9. 9.
    Pei L, Liu J, Zhang Y et al (2009) Association of reduced folate carrier gene polymorphism and maternal folic acid use with neural tube defects. Am J Med Genet B Neuropsychiatr Genet 150B(6):874–878PubMedCrossRefGoogle Scholar
  10. 10.
    Shang Y, Zhao H, Niu B et al (2008) Correlation of polymorphism of MTHFRs and RFC-1 genes with neural tube defects in China. Birth Defects Res A Clin Mol Teratol 82(1):3–7PubMedCrossRefGoogle Scholar
  11. 11.
    Weisberg I, Tran P, Christensen B et al (1998) A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 64(3):169–172PubMedCrossRefGoogle Scholar
  12. 12.
    Frosst P, Blom HJ, Milos R et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10(1):111–113PubMedCrossRefGoogle Scholar
  13. 13.
    Trotti A, Byhardt R, Stetz J et al (2000) Common toxicity criteria: version 2.0. An improved reference for grading the acute effect of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 47(1):13–47PubMedCrossRefGoogle Scholar
  14. 14.
    Chiusolo P, Reddiconto G, Cimino G et al (2004) Methylenetetrahydrofolate reductase genotypes do not play a role in acute lymphoblastic leukemia pathogenesis in the Italian population. Haematologica 89(2):139–144PubMedGoogle Scholar
  15. 15.
    Aplenc R, Thompson J, Han P et al (2005) Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 65(6):2482–2487PubMedCrossRefGoogle Scholar
  16. 16.
    Krajinovic M, Lemieux-Blanchard E et al (2004) Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4(1):66–72PubMedCrossRefGoogle Scholar
  17. 17.
    Krajinovic M, Lamothe S, Labuda D et al (2004) Role of MTHFR genetic polymorphisms in the susceptibility to childhood acute lymphoblastic leukemia. Blood 103(1):252–257PubMedCrossRefGoogle Scholar
  18. 18.
    Kim HN, Kim YK, Lee IK et al (2009) Association between polymorphisms of folate-metabolizing enzymes and hematological malignancies. Leuk Res 33(1):82–87PubMedCrossRefGoogle Scholar
  19. 19.
    Chiusolo P, Reddiconto G, Cimino G et al (2004) Methylenetetrahydrofolate reductase genotypes do not play a role in acute lymphoblastic leukemia pathogenesis in the Italian population. Haematologica 89(2):139–144PubMedGoogle Scholar
  20. 20.
    Ongaro A, De Mattei M, Della Porta MG et al (2009) Gene polymorphisms in folate metabolizing enzymes in adult acute lymphoblastic leukemia: effects on methotrexate-related toxicity and survival. Haematologica 94(10):1391–1398PubMedCrossRefGoogle Scholar
  21. 21.
    Liu JX, Chen JP, Tan W et al (2008) Association between MTHFR gene polymorphisms and toxicity of HDMTX chemotherapy in acute lymphocytic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 16(3):488–492PubMedGoogle Scholar
  22. 22.
    Kantar M, Kosova B, Cetingul N et al (2009) Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 50(6):912–917PubMedCrossRefGoogle Scholar
  23. 23.
    Toffoli G, Russo A, Innocenti F et al (2003) Effect of methylenetetrahydrofolate reductase 677C→T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int J Cancer 103(3):294–299PubMedCrossRefGoogle Scholar
  24. 24.
    Urano W, Taniguchi A, Yamanaka H et al (2002) Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 12(3):183–190PubMedCrossRefGoogle Scholar
  25. 25.
    Shimasaki N, Mori T, Samejima H et al (2006) Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 28(2):64–68PubMedCrossRefGoogle Scholar
  26. 26.
    Seidemann K, Book M, Zimmermann M et al (2006) MTHFR 677 (C→T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol 85(5):291–300PubMedCrossRefGoogle Scholar
  27. 27.
    Chiusolo P, Reddiconto G, Farina G et al (2007) MTHFR polymorphisms’ influence on outcome and toxicity in acute lymphoblastic leukemia patients. Leuk Res 31(12):1669–1674PubMedCrossRefGoogle Scholar
  28. 28.
    Huang L, Tissing WJ, de Jonge R et al (2008) Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia 22(9):1798–1800PubMedCrossRefGoogle Scholar
  29. 29.
    de Jonge R, Hooijberg JH, van Zelst BD et al (2005) Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 106(2):717–720PubMedCrossRefGoogle Scholar
  30. 30.
    Jansen G, Mauritz R, Drori S et al (1998) A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem 273(46):30189–30198PubMedCrossRefGoogle Scholar
  31. 31.
    Whetstine JR, Gifford AJ, Witt T et al (2001) Single nucleotide polymorphisms in the human reduced folate carrier: characterization of a high-frequency G/A variant at position 80 and transport properties of the His(27) and Arg(27) carriers. Clin Cancer Res 7(11):3416–3422PubMedGoogle Scholar
  32. 32.
    Dervieux T, Furst D, Lein DO et al (2004) Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum 50(9):2766–2774PubMedCrossRefGoogle Scholar
  33. 33.
    Rocha JC, Cheng C, Liu W et al (2005) Pharmacogenetics of outcome in children with acute lymphoblastic leukemia. Blood 105(12):4752–4758PubMedCrossRefGoogle Scholar
  34. 34.
    Lavardière C, Chiasson S, Costea I et al (2002) Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and out come of childhood acute lymphoblastic leukemia. Blood 100(10):3832–3834CrossRefGoogle Scholar
  35. 35.
    Ashton LJ, Gifford AJ, Kwan E et al (2009) Reduced folate carrier and methylenetetrahydrofolate reductase gene polymorphisms: associations with clinical outcome in childhood acute lymphoblastic leukemia. Leukemia 23(7):1348–1351PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Patrizia Chiusolo
    • 1
  • Sabrina Giammarco
    • 1
  • Silvia Bellesi
    • 1
  • Elisabetta Metafuni
    • 1
  • Nicola Piccirillo
    • 1
  • Daniela De Ritis
    • 1
  • Sara Marietti
    • 1
  • Sorà Federica
    • 1
  • Luca Laurenti
    • 1
  • Luana Fianchi
    • 1
  • Stefan Hohaus
    • 1
  • Leone Giuseppe
    • 1
  • Simona Sica
    • 1
  1. 1.Department of HematologyUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations