Cancer Chemotherapy and Pharmacology

, Volume 68, Issue 5, pp 1315–1323 | Cite as

Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells

  • Ying-Wei Li
  • Guo-Yuan Zhu
  • Xiao-Ling Shen
  • Jian-Hong Chu
  • Zhi-Ling Yu
  • Wang-Fun FongEmail author
Original Article



Overexpression of EGFR and HER2 is seen in breast cancers and results in poor prognosis and decreased patient survival. Clinically, EGFR and HER2 are effective therapeutic targets. The objective of this study is to investigate the in vitro effects of furanodienone, an active chemical component isolated from Rhizoma Curcumae, on the activation of EGFR/HER2 signaling, cell cycle, and apoptosis in HER2-overexpressing BT474 and SKBR3 cells.


Cell growth was assessed by SRB protein assay. Cell cycle analysis was carried out by flow cytometry, and apoptosis was observed by Annexin V and DAPI staining. Effects of furanodienone on the activation of EGFR/HER2 signaling-related proteins were analyzed by western blotting.


Furanodienone inhibited cell growth in BT474 and SKBR3 cells. Furanodienone caused G1 arrest in BT474 cells and induced apoptosis in SKBR3 cells. Furanodienone interfered with EGFR/HER2 signaling in treated cells as shown by decreases in phosphorylated EGFR, HER2, Akt, Gsk3β and an increase in p27kip1 protein. Accordingly, furanodienone inhibited EGF-induced phosphorylation of EGFR, HER2, Akt, and Gsk3β. EGFR-specific siRNA knockdown did not affect the cell growth inhibitory effect of furanodienone. On the contrary, specific siRNA knockdown of HER2 increased cellular resistance to furanodienone toxicity. In HER-2-deficient MDA-MB-231 cells, the transfection and expression of HER2 increased the sensitivity of cells to furanodienone toxicity.


Furanodienone inhibited EGFR/HER2 signaling pathway in BT474 and SKBR3 cells. More importantly, the effect of furanodienone was specifically dependent on HER2, but not EGFR, expression.


Furanodienone EGFR HER2 Breast cancer 



We thank Dr. Richard K.W. Choy (Obstetrics and Gynaecology Department, The Chinese University of Hong Kong) for the generous gift of SKBR3 cell line. This work was supported by a Faculty Research Grant of Hong Kong Baptist University (FRG2/08-09/102).

Supplementary material

280_2011_1624_MOESM1_ESM.pdf (300 kb)
Supplementary material 1 (PDF 307 kb)


  1. 1.
    Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67(14):2045–2075PubMedCrossRefGoogle Scholar
  2. 2.
    Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11(4):689–708PubMedCrossRefGoogle Scholar
  3. 3.
    Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187PubMedCrossRefGoogle Scholar
  4. 4.
    Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31PubMedCrossRefGoogle Scholar
  5. 5.
    Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10):2013–2023PubMedCrossRefGoogle Scholar
  6. 6.
    Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167PubMedCrossRefGoogle Scholar
  7. 7.
    Bazley LA, Gullick WJ (2005) The epidermal growth factor receptor family. Endocr Relat Cancer 12(Suppl 1):S17–S27PubMedCrossRefGoogle Scholar
  8. 8.
    Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8PubMedCrossRefGoogle Scholar
  9. 9.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRefGoogle Scholar
  10. 10.
    Nunes RA, Harris LN (2002) The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin Breast Cancer 3(2):125–135 (discussion 136–127)Google Scholar
  11. 11.
    Abd El-Rehim DM, Pinder SE, Paish CE, Bell JA, Rampaul RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542PubMedCrossRefGoogle Scholar
  12. 12.
    Hudelist G, Singer CF, Manavi M, Pischinger K, Kubista E, Czerwenka K (2003) Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 80(3):353–361PubMedCrossRefGoogle Scholar
  13. 13.
    Bernard-Marty C, Lebrun F, Awada A, Piccart MJ (2006) Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 66(12):1577–1591PubMedCrossRefGoogle Scholar
  14. 14.
    Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S, Ramon y Cajal S, Arribas J, Baselga J (2009) Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28(6):803–814PubMedCrossRefGoogle Scholar
  15. 15.
    Yarden Y (2001) Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl 2):1–13PubMedCrossRefGoogle Scholar
  16. 16.
    Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C (2004) HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 90(12):2344–2348PubMedGoogle Scholar
  17. 17.
    Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578PubMedCrossRefGoogle Scholar
  18. 18.
    Jones KL, Buzdar AU (2009) Evolving novel anti-HER2 strategies. Lancet Oncol 10(12):1179–1187PubMedCrossRefGoogle Scholar
  19. 19.
    Yip AY, Tse LA, Ong EY, Chow LW (2010) Survival benefits from lapatinib therapy in women with HER2-overexpressing breast cancer: a systematic review. Anticancer Drugs 21(5):487–493PubMedCrossRefGoogle Scholar
  20. 20.
    Reid A, Vidal L, Shaw H, de Bono J (2007) Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 43(3):481–489PubMedCrossRefGoogle Scholar
  21. 21.
    Lurje G, Lenz HJ (2009) EGFR signaling and drug discovery. Oncology 77(6):400–410PubMedCrossRefGoogle Scholar
  22. 22.
    Ma E, Wang X, Li Y, Sun X, Tai W, Li T, Guo T (2008) Induction of apoptosis by furanodiene in HL60 leukemia cells through activation of TNFR1 signaling pathway. Cancer Lett 271(1):158–166PubMedCrossRefGoogle Scholar
  23. 23.
    Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20(7):680–685PubMedCrossRefGoogle Scholar
  24. 24.
    Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull (Tokyo) 56(7):936–940CrossRefGoogle Scholar
  25. 25.
    Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L (2007) Enhanced antitumor effect of combined triptolide and ionizing radiation. Clin Cancer Res 13(16):4891–4899PubMedCrossRefGoogle Scholar
  26. 26.
    Ricote M, Garcia-Tunon I, Fraile B, Fernandez C, Aller P, Paniagua R, Royuela M (2006) P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis 11(11):1969–1975PubMedCrossRefGoogle Scholar
  27. 27.
    Tse AK, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, Fong WF (2007) Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 44(10):2647–2658PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang D, Pal A, Bornmann WG, Yamasaki F, Esteva FJ, Hortobagyi GN, Bartholomeusz C, Ueno NT (2008) Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther 7(7):1846–1850PubMedCrossRefGoogle Scholar
  29. 29.
    Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469PubMedCrossRefGoogle Scholar
  30. 30.
    Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X (2009) Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 34(1):25–32PubMedGoogle Scholar
  31. 31.
    Chiosis G, Keeton AB (2009) Assay for isolation of inhibitors of her2-kinase expression. Methods Mol Biol 486:139–149PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ying-Wei Li
    • 1
  • Guo-Yuan Zhu
    • 1
  • Xiao-Ling Shen
    • 1
  • Jian-Hong Chu
    • 1
  • Zhi-Ling Yu
    • 1
  • Wang-Fun Fong
    • 1
    Email author
  1. 1.School of Chinese Medicine, Center for Cancer and Inflammation ResearchHong Kong Baptist UniversityKowloon TongHong Kong, China

Personalised recommendations