Cancer Chemotherapy and Pharmacology

, Volume 68, Issue 5, pp 1119–1124

Phase I trial of metronomic oral vinorelbine in patients with advanced cancer

  • Lakshmi Rajdev
  • Abdissa Negassa
  • Qun Dai
  • Gary Goldberg
  • Kathy Miller
  • Joseph A. Sparano
Original Article

Abstract

Background

Antitubulin agents exhibit antiangiogenic effects in vitro and in vivo. We evaluated the safety and feasibility of administering a metronomic schedule of oral vinorelbine designed to optimize its antiangiogenic effects.

Methods

Patient with advanced cancer who had progressive disease after standard therapy received oral vinorelbine 3 times weekly (i.e., Monday, Wednesday, Friday) at the 6 dose levels ranging from 20 mg (1 week on, 1 week off) to 50 mg (3 weeks on, 1 week off) in cohorts of 3–6 patients at each dose level using a standard phase I design. Dose-limiting toxicity (DLT) during cycle 1 included: (1) neutrophil nadir < 500/μL attributed to therapy, (2) platelet nadir < 50,000/μL attributed to therapy, (3) grade 3–4 non-hematologic toxicity attributed to therapy, and (4) neutropenia associated with grade 2 fever (i.e., febrile neutropenia).

Results

Nineteen patients received 50 cycles of therapy (range 1–11 cycles) at 6 dose levels. There were no dose-limiting toxic events. There were no consistent changes in serum TIE-2 or VCAM-1 levels, or urinary VEGF. One patient with renal cell carcinoma had stable disease for 9 months, and another patient with metastatic prostate cancer had a 70% decline in serum prostate-specific antigen, which lasted 4 months.

Conclusions

Oral vinorelbine may be given using a metronomic schedule, 50 mg thrice weekly for three of 4 weeks, with minimal toxicity in patients with advanced cancer.

Keywords

Metronomic Oral Vinorelbine Advanced cancer 

References

  1. 1.
    Binet S, Chaineau E, Fellous A et al (1990) Immunofluorescence study of the action of navelbine, vincristine and vinblastine on mitotic and axonal microtubules. Int J Cancer 46:262–266PubMedCrossRefGoogle Scholar
  2. 2.
    Binet S, Fellous A, Lataste H et al (1989) In situ analysis of the action of Navelbine on various types of microtubules using immunofluorescence. Semin Oncol 16:5–8PubMedGoogle Scholar
  3. 3.
    Fellous A, Ohayon R, Vacassin T et al (1989) Biochemical effects of Navelbine on tubulin and associated proteins. Semin Oncol 16:9–14PubMedGoogle Scholar
  4. 4.
    Cvitkovic E, Izzo J (1992) The current and future place of vinorelbine in cancer therapy. Drugs 44(Suppl 4):36–45 (discussion 66–9)PubMedCrossRefGoogle Scholar
  5. 5.
    Nasti G, Errante D, Talamini R et al (2000) Vinorelbine is an effective and safe drug for AIDS-related Kaposi’s sarcoma: results of a phase II study. J Clin Oncol 18:1550–1557PubMedGoogle Scholar
  6. 6.
    Rule S, Tighe M, Davies S et al (1998) Vinorelbine in the treatment of lymphoma. Hematol Oncol 16:101–105PubMedCrossRefGoogle Scholar
  7. 7.
    Tirelli U, Balzarotti M, Uziel L et al (2006) Vinorelbine and prednisone in frail elderly patients with intermediate-high grade non-Hodgkin’s lymphomas. Ann Oncol 17:533PubMedCrossRefGoogle Scholar
  8. 8.
    Belotti D, Vergani V, Drudis T et al (1996) The microtubule-affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1849PubMedGoogle Scholar
  9. 9.
    Hotchkiss KA, Ashton AW, Mahmood R et al (2002) Inhibition of endothelial cell function in vitro and angiogenesis in vivo by docetaxel (Taxotere): association with impaired repositioning of the microtubule organizing center. Mol Cancer Ther 1:1191–1200PubMedGoogle Scholar
  10. 10.
    Vacca A, Iurlaro M, Ribatti D et al (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155PubMedGoogle Scholar
  11. 11.
    Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4:423–436PubMedCrossRefGoogle Scholar
  12. 12.
    Hanahan D, Bergers G, Bergsland E (2000) Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105:1045–1047PubMedCrossRefGoogle Scholar
  13. 13.
    Seidman AD, Berry D, Cirrincione C et al (2008) Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressors: final results of cancer and Leukemia Group B protocol 9840. J Clin Oncol 26:1642–1649PubMedCrossRefGoogle Scholar
  14. 14.
    Sparano JA, Wang M, Martino S et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–1671PubMedCrossRefGoogle Scholar
  15. 15.
    Belani CP, Ramalingam S, Perry MC et al (2008) Randomized, phase III study of weekly paclitaxel in combination with carboplatin versus standard every-3-weeks administration of carboplatin and paclitaxel for patients with previously untreated advanced non-small-cell lung cancer. J Clin Oncol 26:468–473PubMedCrossRefGoogle Scholar
  16. 16.
    Rivera E, Mejia JA, Arun BK et al (2008) Phase 3 study comparing the use of docetaxel on an every-3-week versus weekly schedule in the treatment of metastatic breast cancer. Cancer 112:1455–1461PubMedCrossRefGoogle Scholar
  17. 17.
    Tannock IF, de Wit R, Berry WR et al (2004) Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 351:1502–1512PubMedCrossRefGoogle Scholar
  18. 18.
    Schuette W, Nagel S, Blankenburg T et al (2005) Phase III study of second-line chemotherapy for advanced non-small-cell lung cancer with weekly compared with 3-weekly docetaxel. J Clin Oncol 23:8389–8395PubMedCrossRefGoogle Scholar
  19. 19.
    Rowinsky EK, Noe DA, Trump DL et al (1994) Pharmacokinetic, bioavailability, and feasibility study of oral vinorelbine in patients with solid tumors. J Clin Oncol 12:1754–1763PubMedGoogle Scholar
  20. 20.
    Depierre A, Freyer G, Jassem J et al (2001) Oral vinorelbine: feasibility and safety profile. Ann Oncol 12:1677–1681PubMedCrossRefGoogle Scholar
  21. 21.
    Alexiou D, Karayiannakis AJ, Syrigos KN et al (2001) Serum levels of E-selectin, ICAM-1 and VCAM-1 in colorectal cancer patients: correlations with clinicopathological features, patient survival and tumour surgery. Eur J Cancer 37:2392–2397PubMedCrossRefGoogle Scholar
  22. 22.
    Caine GJ, Blann AD, Stonelake PS et al (2003) Plasma angiopoietin-1, angiopoietin-2 and Tie-2 in breast and prostate cancer: a comparison with VEGF and Flt-1. Eur J Clin Invest 33:883–890PubMedCrossRefGoogle Scholar
  23. 23.
    Bocci G, Man S, Green SK et al (2004) Increased plasma vascular endothelial growth factor (VEGF) as a surrogate marker for optimal therapeutic dosing of VEGF receptor-2 monoclonal antibodies. Cancer Res 64:6616–6625PubMedCrossRefGoogle Scholar
  24. 24.
    Eisenhauer EA, O’Dwyer PJ, Christian M et al (2000) Phase I clinical trial design in cancer drug development. J Clin Oncol 18:684–692PubMedGoogle Scholar
  25. 25.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, national cancer institute of the united states, national cancer institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRefGoogle Scholar
  26. 26.
    Briasoulis E, Pappas P, Puozzo C et al (2009) Dose-ranging study of metronomic oral vinorelbine in patients with advanced refractory cancer. Clin Cancer Res 15:6454–6461PubMedCrossRefGoogle Scholar
  27. 27.
    Wong AL, Haroon ZA, Werner S et al (1997) Tie2 expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81:567–574PubMedGoogle Scholar
  28. 28.
    Sato TN, Tozawa Y, Deutsch U et al (1995) Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation. Nature 376:70–74PubMedCrossRefGoogle Scholar
  29. 29.
    Eisen T, Boshoff C, Mak I et al (2000) Continuous low dose Thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br J Cancer 82:812–817PubMedCrossRefGoogle Scholar
  30. 30.
    Rice GE, Bevilacqua MP (1989) An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246:1303–1306PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Lakshmi Rajdev
    • 1
  • Abdissa Negassa
    • 2
  • Qun Dai
    • 3
  • Gary Goldberg
    • 4
  • Kathy Miller
    • 5
  • Joseph A. Sparano
    • 1
    • 4
  1. 1.Department of OncologyAlbert Einstein College of Medicine and Cancer Center, Montefiore Medical CenterBronxUSA
  2. 2.Department of Epidemiology and Population Health, Division of BiostaticsAlbert Einstein College of Medicine and Cancer CenterBronxUSA
  3. 3.Department of Medical OncologyStaten Island University HospitalStaten IslandUSA
  4. 4.Department of Obstetrics, Gynecology, and Women’s Health, Division of Gynecologic OncologyAlbert Einstein College of Medicine and Cancer Center, Montefiore Medical CenterBronxUSA
  5. 5.Department of Medicine, Division of Hematology/OncologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations