Cancer Chemotherapy and Pharmacology

, Volume 68, Issue 3, pp 721–731 | Cite as

Effect of radiation on the penetration of irinotecan in rat cerebrospinal fluid

  • Amit Khatri
  • M. Waleed Gaber
  • Richard C. Brundage
  • Michael D. Naimark
  • Suzan K. Hanna
  • Clinton F. Stewart
  • Mark N. Kirstein
Original Article



Anticancer agents are useful for treating brain tumors, but sub therapeutic concentrations due to decreased blood–brain barrier (BBB) penetration limit their effectiveness. This study evaluated the effect of cranial radiation on the pharmacokinetics of irinotecan in plasma and cerebrospinal fluid (CSF).


Rats (n = 48) were treated with irinotecan (10 mg/kg), and then administered 10 or 20 Gy or sham irradiation as control after drug. The pharmacokinetics for irinotecan, SN-38, and APC were measured in plasma and CSF over 6 h. Up to 7 plasma samples per animal were collected, and one CSF sample was collected per animal (serial sacrifice design). Population pharmacokinetic analysis was performed with NONMEM, and radiation tested as a covariate for the fraction of irinotecan (fCSF) entering the CSF.


The estimate of fCSF (% and RSE) was 0.165 (73.5) for the control group and 0.265 (66.5) for radiation-treated groups, respectively (P < 0.05). Predictive check plots showed that the model adequately described the overall trend and variability in the observed data. The median values of bootstrap parameters were similar to the NONMEM estimates based on the original data set.


These results indicate that cranially administered radiation can increase the penetration of anticancer agents such as irinotecan into the CSF. Studies that evaluate radiation-fractionation, radiation-time course effect relationships, blood–brain barrier and blood-tumor barrier effects for irinotecan and other anticancer agents are warranted.


Irinotecan Radiation Cerebrospinal fluid Pharmacokinetics 


Conflict of interest



  1. 1.
    Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, Fenart L (2007) Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov 6(8):650–661PubMedCrossRefGoogle Scholar
  2. 2.
    Pizzolato JF, Saltz LB (2003) Irinotecan (Campto) in the treatment of pancreatic cancer. Expert Rev Anticancer Ther 3(5):587–593PubMedCrossRefGoogle Scholar
  3. 3.
    Kudoh S, Fujiwara Y, Takada Y, Yamamoto H, Kinoshita A, Ariyoshi Y, Furuse K, Fukuoka M (1998) Phase II study of irinotecan combined with cisplatin in patients with previously untreated small-cell lung cancer. West Japan Lung Cancer Group. J Clin Oncol 16(3):1068–1074PubMedGoogle Scholar
  4. 4.
    Verschraegen CF, Levy T, Kudelka AP, Llerena E, Ende K, Freedman RS, Edwards CL, Hord M, Steger M, Kaplan AL, Kieback D, Fishman A, Kavanagh JJ (1997) Phase II study of irinotecan in prior chemotherapy-treated squamous cell carcinoma of the cervix. J Clin Oncol 15(2):625–631PubMedGoogle Scholar
  5. 5.
    Ohno R, Okada K, Masaoka T, Kuramoto A, Arima T, Yoshida Y, Ariyoshi H, Ichimaru M, Sakai Y, Oguro M et al (1990) An early phase II study of CPT-11: a new derivative of camptothecin, for the treatment of leukemia and lymphoma. J Clin Oncol 8(11):1907–1912PubMedGoogle Scholar
  6. 6.
    Satoh T, Hosokawa M, Atsumi R, Suzuki W, Hakusui H, Nagai E (1994) Metabolic activation of CPT-11, 7-ethyl-10-[4-(1-piperidino)-1- piperidino]carbonyloxycamptothecin, a novel antitumor agent, by carboxylesterase. Biol Pharm Bull 17(5):662–664PubMedCrossRefGoogle Scholar
  7. 7.
    Rivory LP, Robert J (1995) Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after administration of the camptothecin derivative irinotecan. Cancer Chemother Pharmacol 36(2):176–179PubMedCrossRefGoogle Scholar
  8. 8.
    Haaz MC, Rivory L, Riche C, Vernillet L, Robert J (1998) Metabolism of irinotecan (CPT-11) by human hepatic microsomes: participation of cytochrome P-450 3A and drug interactions. Cancer Res 58(3):468–472PubMedGoogle Scholar
  9. 9.
    Rivory LP, Riou JF, Haaz MC, Sable S, Vuilhorgne M, Commercon A, Pond SM, Robert J (1996) Identification and properties of a major plasma metabolite of irinotecan (CPT-11) isolated from the plasma of patients. Cancer Res 56(16):3689–3694PubMedGoogle Scholar
  10. 10.
    Friedman HS, Petros WP, Friedman AH, Schaaf LJ, Kerby T, Lawyer J, Parry M, Houghton PJ, Lovell S, Rasheed K, Cloughsey T, Stewart ES, Colvin OM, Provenzale JM, McLendon RE, Bigner DD, Cokgor I, Haglund M, Rich J, Ashley D, Malczyn J, Elfring GL, Miller LL (1999) Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol 17(5):1516–1525PubMedGoogle Scholar
  11. 11.
    Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27(28):4733–4740PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson CM, Gaber MW, Sabek OM, Zawaski JA, Merchant TE (2009) Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int J Radiat Oncol Biol Phys 74(3):934–941PubMedCrossRefGoogle Scholar
  13. 13.
    FitzGerald TJ, Aronowitz J, Giulia Cicchetti M, Fisher G, Kadish S, Lo YC, Mayo C, McCauley S, Meyer J, Pieters R, Sherman A (2006) The effect of radiation therapy on normal tissue function. Hematol Oncol Clin North Am 20(1):141–163PubMedCrossRefGoogle Scholar
  14. 14.
    Yuan H, Gaber MW, McColgan T, Naimark MD, Kiani MF, Merchant TE (2003) Radiation-induced permeability, leukocyte adhesion in the rat blood-brain barrier: modulation with anti-ICAM-1 antibodies. Brain Res 969(1–2):59–69PubMedCrossRefGoogle Scholar
  15. 15.
    Spector R (2010) Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress. J Neurochem 112(1):13–23Google Scholar
  16. 16.
    Deeken JF, Loscher W (2007) The blood-brain barrier, cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13(6):1663–1674PubMedCrossRefGoogle Scholar
  17. 17.
    Furman WL, Stewart CF, Poquette CA, Pratt CB, Santana VM, Zamboni WC, Bowman LC, Ma MK, Hoffer FA, Meyer WH, Pappo AS, Walter AW, Houghton PJ (1999) Direct translation of a protracted irinotecan schedule from a xenograft model to a phase I trial in children. J Clin Oncol 17(6):1815–1824PubMedGoogle Scholar
  18. 18.
    Bouzom F, Laveille C, Merdjan H, Jochemsen R (2000) Use of nonlinear mixed effect modeling for the meta-analysis of preclinical pharmacokinetic data: application to S 20342 in the rat. J Pharm Sci 89(5):603–613PubMedCrossRefGoogle Scholar
  19. 19.
    van den Berg MP, Romeijn SG, Verhoef JC, Merkus FW (2002) Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neurosci Methods 116(1):99–107PubMedCrossRefGoogle Scholar
  20. 20.
    de Lange EC, Danhof M (2002) Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain. Clin Pharmacokinet 41(10):691–703PubMedCrossRefGoogle Scholar
  21. 21.
    Johanson CE, Duncan JA, Stopa EG, Baird A (2005) Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 22(7):1011–1037PubMedCrossRefGoogle Scholar
  22. 22.
    Redzic ZB, Segal MB (2004) The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev 56(12):1695–1716PubMedCrossRefGoogle Scholar
  23. 23.
    Qin D, Ma J, Xiao J, Tang Z (1997) Effect of brain irradiation on blood-CSF barrier permeability of chemotherapeutic agents. Am J Clin Oncol 20(3):263–265PubMedCrossRefGoogle Scholar
  24. 24.
    de la Fouchardiere C, Negrier S, Labrosse H, Martel Lafay I, Desseigne F, Meeus P, Tavan D, Petit-Laurent F, Rivoire M, Perol D, Carrie C (2010) Phase I study of daily irinotecan as a radiation sensitizer for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 77(2):409–413Google Scholar
  25. 25.
    Rich TA, Kirichenko AV (2001) Camptothecin schedule and timing of administration with irradiation. Oncology (Williston Park) 15(3 Suppl 5):37–41Google Scholar
  26. 26.
    Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J, Sparreboom A, McLeod HL (2003) Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 9(9):3246–3253PubMedGoogle Scholar
  27. 27.
    Luo FR, Paranjpe PV, Guo A, Rubin E, Sinko P (2002) Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos 30(7):763–770PubMedCrossRefGoogle Scholar
  28. 28.
    Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE, Kim HT, Lee JS (2008) Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59(1):69–75PubMedCrossRefGoogle Scholar
  29. 29.
    Zhou Q, Sparreboom A, Tan EH, Cheung YB, Lee A, Poon D, Lee EJ, Chowbay B (2005) Pharmacogenetic profiling across the irinotecan pathway in Asian patients with cancer. Br J Clin Pharmacol 59(4):415–424PubMedCrossRefGoogle Scholar
  30. 30.
    Urquhart BL, Kim RB (2009) Blood-brain barrier transporters and response to CNS-active drugs. Eur J Clin Pharmacol 65(11):1063–1070PubMedCrossRefGoogle Scholar
  31. 31.
    Imai T (2006) Human carboxylesterase isozymes: catalytic properties and rational drug design. Drug Metab Pharmacokinet 21(3):173–185PubMedCrossRefGoogle Scholar
  32. 32.
    Mori M, Hosokawa M, Ogasawara Y, Tsukada E, Chiba K (1999) cDNA cloning, characterization and stable expression of novel human brain carboxylesterase. FEBS Lett 458(1):17–22PubMedCrossRefGoogle Scholar
  33. 33.
    Xie R, Mathijssen RH, Sparreboom A, Verweij J, Karlsson MO (2002) Clinical pharmacokinetics of irinotecan, its metabolites: a population analysis. J Clin Oncol 20(15):3293–3301PubMedCrossRefGoogle Scholar
  34. 34.
    Hu Z, Yang X, Ho PC, Chan E, Chan SY, Xu C, Li X, Zhu YZ, Duan W, Chen X, Huang M, Yang H, Zhou S (2005) St. John’s Wort modulates the toxicities and pharmacokinetics of CPT-11 (irinotecan) in rats. Pharm Res 22(6):902–914PubMedCrossRefGoogle Scholar
  35. 35.
    Stewart CF, Zamboni WC, Crom WR, Houghton PJ (1997) Disposition of irinotecan and SN-38 following oral and intravenous irinotecan dosing in mice. Cancer Chemother Pharmacol 40(3):259–265PubMedCrossRefGoogle Scholar
  36. 36.
    Zamboni WC, Houghton PJ, Thompson J, Cheshire PJ, Hanna SK, Richmond LB, Lou X, Stewart CF (1998) Altered irinotecan and SN-38 disposition after intravenous and oral administration of irinotecan in mice bearing human neuroblastoma xenografts. Clin Cancer Res 4(2):455–462PubMedGoogle Scholar
  37. 37.
    Venook AP, Enders Klein C, Fleming G, Hollis D, Leichman CG, Hohl R, Byrd J, Budman D, Villalona M, Marshall J, Rosner GL, Ramirez J, Kastrissios H, Ratain MJ (2003) A phase I, pharmacokinetic study of irinotecan in patients with hepatic or renal dysfunction or with prior pelvic radiation: CALGB 9863. Ann Oncol 14(12):1783–1790PubMedCrossRefGoogle Scholar
  38. 38.
    Yang XX, Hu ZP, Chan SY, Duan W, Ho PC, Boelsterli UA, Ng KY, Chan E, Bian JS, Chen YZ, Huang M, Zhou SF (2006) Pharmacokinetic mechanisms for reduced toxicities of irinotecan by co-administered thalidomide. Curr Drug Metab 7(4):431–455Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Amit Khatri
    • 1
  • M. Waleed Gaber
    • 2
  • Richard C. Brundage
    • 1
  • Michael D. Naimark
    • 3
  • Suzan K. Hanna
    • 3
  • Clinton F. Stewart
    • 3
  • Mark N. Kirstein
    • 1
    • 4
  1. 1.Department of Experimental and Clinical Pharmacology, College of PharmacyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of PediatricsBaylor College of MedicineHoustonUSA
  3. 3.Department of Pharmaceutical SciencesSt. Jude Children’s Research HospitalMemphisUSA
  4. 4.Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations