Cancer Chemotherapy and Pharmacology

, Volume 67, Supplement 1, pp 45–50 | Cite as

The role of imatinib plasma level testing in gastrointestinal stromal tumor

  • Suzanne GeorgeEmail author
  • Jonathan C. Trent
Supplement (SPECIAL ISSUE)


The management of patients with gastrointestinal stromal tumor (GIST) has markedly advanced over the past 10 years. Imatinib has exceptional activity in controlling gastrointestinal stromal tumor (GIST) due to inhibition of the constitutively active conformation of KIT and PDGFRA which is found in the majority of patients with GIST. Although some patients may experience prolonged disease control while on imatinib, most patients will develop imatinib resistance within 2–3 years on therapy. A recent retrospective analysis demonstrated a relationship between imatinib plasma levels and progression-free survival in patients with advanced GIST. Plasma imatinib levels in this study were unrelated to the daily administered dose of imatinib. A prospective trial is underway in order to evaluate whether modification of imatinib dose to achieve a target imatinib plasma level will impact patient outcome when compared to standard imatinib dosing in GIST (, NCT01031628).  This review will explore the current available data on the relationship between imatinib plasma levels, response to treatment, and other prognositic factors as well as discuss the implications of this data for possible future therapeutic approaches.


GIST Imatinib Blood levels Prognostic factors Therapy Dosing 



Logistical support during submission of this article was provided by Springer Healthcare LLC. This support was funded by Novartis.

Conflict of interest

Dr. Suzanne George: Novartis and Pfizer Advisory Boards; Dr. Jonathan C. Trent: I have clinical trial support, honoraria from Novartis Pharmaceuticals. I have laboratory support from Merck Pharmaceuticals.


  1. 1.
    Blanke C, Rankin C, Demetri G et al (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. JCO 26:626–632CrossRefGoogle Scholar
  2. 2.
    Blanke C, Demetri G, Von Mehren M et al (2008) Long-term results from a randomized phase ii trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. JCO 25:620–625Google Scholar
  3. 3.
    Fletcher CD, Berman JJ, Corless C et al (2002) Diagnosis of gastrointestinal stromal tumors: a consensus approach. Hum Pathol 33(5):459–465CrossRefPubMedGoogle Scholar
  4. 4.
    Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580CrossRefPubMedGoogle Scholar
  5. 5.
    Kindblom LG, Remotti HE, Aldenborg F et al (1998) Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 152(5):1259–1269PubMedGoogle Scholar
  6. 6.
    Joensuu H, Roberts PJ, Sarlomo-Rikala M et al (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344(14):1052–1056CrossRefPubMedGoogle Scholar
  7. 7.
    Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347(7):472–480CrossRefPubMedGoogle Scholar
  8. 8.
    Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: pathology and prognosis at different sites. Semin Diagn Pathol 23(2):70–83CrossRefPubMedGoogle Scholar
  9. 9.
    Martin-Broto J, Gutierrez A, Garcia-Del-Muro X et al (2010) Prognostic time dependence of deletions affecting condons 557 and/or 558 of KIT gene for relapse-free survival (RFS) in localized GIST: a Spanish group for sarcoma research (GEIS) study. Ann Oncol 21:1552–1557CrossRefPubMedGoogle Scholar
  10. 10.
    Keun Park C, Lee EJ, Kim M et al (2008) Prognostic stratification of high-risk gastrointestinal stromal tumors in the era of targeted therapy. Ann Surg 247(6):1011–1018CrossRefPubMedGoogle Scholar
  11. 11.
    Heinrich MC, Corless CL, Demetri GD et al (2003) Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21(23):4342–4349CrossRefPubMedGoogle Scholar
  12. 12.
    Corless CL, Fletcher JA, Heinrich MC (2004) Biology of gastrointestinal stromal tumors. J Clin Oncol 22(18):3813–3825CrossRefPubMedGoogle Scholar
  13. 13.
    Debiec-Rychter M, Sciot R, Le Cesne A et al (2006) EORTC soft tissue and bone sarcoma group; The Italian sarcoma group; Australasian gastrointestinal trials group. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(8):1093–1103CrossRefPubMedGoogle Scholar
  14. 14.
    Heinrich MC, Corless CL, Duensing A et al (2003) PDGFRA activating mutations in gastrointestinal stromal tumors. Science 299(5607):708–710CrossRefPubMedGoogle Scholar
  15. 15.
    Heinrich M, Owzar K, Corless C et al (2008) Correlation of kinase genotype and clinical outcome in the north american intergroup phase iii trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: calgb 150105 study by cancer and leukemia group B and Southwest oncology group. JCO 26:5360–5367CrossRefGoogle Scholar
  16. 16.
    Debiec-Rychter M, Sciot R, Le Cesne A et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42(8):1093–1103CrossRefPubMedGoogle Scholar
  17. 17.
    Gastrointestinal Tumor Meta-analysis Group (metaGIST) (2010) Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: an analysis of 1,640 patients. JCO 28(7):1247–1253CrossRefGoogle Scholar
  18. 18.
    Zalcberg JR, Verweij J, Casali PG et al (2005) Outcome of patients with advanced gastro-intestinal stromal tumours crossing over to a daily imatinib dose of 800 mg after progression on 400 mg. Eu J Cancer 41:1751–1757CrossRefGoogle Scholar
  19. 19.
    Liegl B, Kepten I, Le C et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216(1):64–74CrossRefPubMedGoogle Scholar
  20. 20.
    Druker BJ, Guilhot F, O’Brien SG et al (2006) Five-year follow-up of imatinib therapy for newly diagnosed myeloid leukemia in chronic-phase shows sustained responses and high overall survival. New Engl J Med 355:2408–2417CrossRefPubMedGoogle Scholar
  21. 21.
    Picard S, Titier K, Etienne G et al (2007) Trough imatinib plasma levels are associated with both cytogenetic, molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109(8):3496–3499CrossRefPubMedGoogle Scholar
  22. 22.
    Larson R, Druker B, Guilhot F et al (2008) Imatinib pharmacokinetics, its correlation with response, safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111(8):4022–4028CrossRefPubMedGoogle Scholar
  23. 23.
    Delbaldo C, Chatelut E, Re M et al (2006) Pharmacokinetic-pharmacodynamic relationships of imatinib and its main metabolite in patients with advanced gastrointestinal stromal tumors. Clin Cancer Res 12:6073–6078CrossRefPubMedGoogle Scholar
  24. 24.
    Demetri GD, Wang Y, Wehrle E et al (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27:3141–3147CrossRefPubMedGoogle Scholar
  25. 25.
    Widmer N, Decosterd L, Leyvraz S et al (2008) Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br J Cancer 98:1633–1640CrossRefPubMedGoogle Scholar
  26. 26.
    Judson I, Ma P, Peng B et al (2005) Imatinib pharmacokinetics in patients with gastrointestinal stromal tumor: a retrospective population pharmacokinetic study over time. EORTC soft tissue and bone sarcoma group. Cancer Chemother Pharmacol 55:379–386CrossRefPubMedGoogle Scholar
  27. 27.
    Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894CrossRefPubMedGoogle Scholar
  28. 28.
    Petain A, Kattygnarath D, Azard J et al (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14(21):7102–7109CrossRefPubMedGoogle Scholar
  29. 29.
    Gardner ER, Burger H, van Schiek RH et al (2006) Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib. Clin Pharm Ther 80(20):192–201Google Scholar
  30. 30.
    Druker BJ, Talpaz M, Resta DJ et al (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myelogenous leukemia. N Eng J Med 344:1031–1037CrossRefGoogle Scholar
  31. 31.
    Yoo C, Ryu MH, Kang BW et al (2010) Cross-sectional study of imatinib plasma trough levels in patients with advanced gastrointestinal stromal tumors: impact of gastrointestinal resection on exposure to imatinib. J Clin Oncol 28:1554–1559CrossRefPubMedGoogle Scholar
  32. 32.
    Van Glabbeke M, Verweij J, Casali PG et al (2005) Initial and late resistance to imatinib in advanced gastrointestinal stromal tumors are predicted by different prognostic factors: a European organisation for research and treatment of cancer-Italian sarcoma group-Australasian gastrointestinal trials group study. J Clin Oncol 23(24):5795–5804CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Harvard Medical School, Clinical Director Center for Sarcoma and Bone OncologyDana-Farber Cancer InstituteBostonUSA
  2. 2.Department of Sarcoma Medical OncologyThe University of Texas, M. D. Anderson Cancer CenterHoustonUSA

Personalised recommendations