Cancer Chemotherapy and Pharmacology

, Volume 67, Issue 6, pp 1381–1388 | Cite as

Uncoupling protein downregulation in doxorubicin-induced heart failure improves mitochondrial coupling but increases reactive oxygen species generation

  • Heiko Bugger
  • Cinthia Guzman
  • Christoph Zechner
  • Monica Palmeri
  • Kerry S. Russell
  • Raymond R. RussellIII
Original Article



Doxorubicin-based chemotherapy is limited by the development of dose-dependent left ventricular dysfunction and congestive heart failure caused by reactive oxygen species (ROS). Uncoupling proteins (UCP) can inhibit mitochondrial ROS production as well as decrease myocyte damage from exogenous ROS. Prior studies have shown that cardiac UCP2 and UCP3 mRNA expression is decreased with acute doxorubicin treatment. However, the expression of UCP protein in hearts with doxorubicin cardiotoxicity and the resultant changes in mitochondrial function and oxidant stress have not been determined.


Heart failure was induced in Sprague–Dawley rats with intraperitoneal injections of doxorubicin (2 mg/kg t.i.w., total dose: 18 mg/kg). Mitochondria were isolated from mice receiving doxorubicin or saline injections for determination of UCP2 and UCP3 expression. In addition, mitochondrial respiration, ATP synthesis and ROS production were determined.


Doxorubicin-induced heart failure was associated with significant decreases in UCP2 and UCP3 protein expression compared with nonfailing hearts (P < 0.05). While the rates of state 3 and state 4 respiration and ATP synthesis were lower in mitochondria isolated from failing hearts, the respiratory control ratio was 15% higher (P < 0.05), and the ratio of ATP production to oxygen consumption was 25% higher (P < 0.05) in mitochondria from failing hearts, indicating greater coupling between citric acid cycle flux and mitochondrial ATP synthesis. However, the decrease in UCP expression was associated with 50% greater mitochondrial ROS generation (P < 0.05).


Downregulation of myocardial UCP2 and UCP3 in the setting of doxorubicin-induced heart failure is associated with improved efficiency of ATP synthesis, which might compensate for abnormal energy metabolism. However, this beneficial effect is counterbalanced by greater oxidant stress.


Cardiotoxicity Mitochondria Reactive oxygen species Energetics 


  1. 1.
    Ascensao A, Magalhaes J, Soares JM, Ferreira R, Neuparth MJ, Marques F, Oliveira PJ, Duarte JA (2005) Moderate endurance training prevents doxorubicin-induced in vivo mitochondriopathy and reduces the development of cardiac apoptosis. Am J Physiol Heart Circ Physiol 289:H722–H731PubMedCrossRefGoogle Scholar
  2. 2.
    Belch J, Bridges A, Scott N, Chopra M (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248PubMedCrossRefGoogle Scholar
  3. 3.
    Bézaire V, Hofmann W, Kramer JKG, Kozak LP, Harper M-E (2001) Effects of fasting on muscle mitochondrial energetics and fatty acid metabolism in UCP3(−/−) and wild-type mice. Am J Physiol 281:E975–E982Google Scholar
  4. 4.
    Bianchi C, Bagnato A, Paggi MG, Floridi A (1987) Effect of adriamycin on electron transport in rat heart, liver, and tumor mitochondria. Exp Mol Pathol 46:123–135PubMedCrossRefGoogle Scholar
  5. 5.
    Bienengraeber M, Ozcan C, Terzic A (2003) Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line. J Mol Cell Cardiol 35:861–865PubMedCrossRefGoogle Scholar
  6. 6.
    Boss O, Hagen T, Lowell BB (2000) Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 49:143–156PubMedCrossRefGoogle Scholar
  7. 7.
    Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112:2686–2695PubMedCrossRefGoogle Scholar
  8. 8.
    Cadenas S, Echtay KS, Harper JA, Jekabsons MB, Buckingham JA, Grau E, Abuin A, Chapman H, Clapham JC, Brand MD (2002) The basal proton conductance of skeletal muscle mitochondria from transgenic mice overexpressing or lacking uncoupling protein-3. J Biol Chem 277:2773–2778PubMedCrossRefGoogle Scholar
  9. 9.
    Childs AC, Phaneuf SL, Dirks AJ, Phillips T, Leeuwenburgh C (2002) Doxorubicin treatment in vivo causes cytochrome c release and cardiomyocyte apoptosis, as well as increased mitochondrial efficiency, superoxide dismutase activity, and Bcl-2:Bax ratio. Cancer Res 62:4592–4598PubMedGoogle Scholar
  10. 10.
    Cline GW, Vidal-Puig AJ, Dufour S, Cadman KS, Lowell BB, Shulman GI (2001) In vivo effects of uncoupling protein-3 gene disruption on mitochondrial energy metabolism. J Biol Chem 276:20240–20244PubMedCrossRefGoogle Scholar
  11. 11.
    Darley-Usmar V, Rickwood D, Wilson M (1987) Mitochondria: a practical approach. IRL Press, Ltd, OxfordGoogle Scholar
  12. 12.
    Diotte NM, Xiong Y, Gao J, Chua BH, Ho YS (2009) Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta 1793:427–438PubMedCrossRefGoogle Scholar
  13. 13.
    Doenst T, Han Q, Goodwin GW, Guthrie PH, Taegtmeyer H (1998) Insulin does not change the intracellular distribution of hexokinase in rat heart. Am J Physiol 275:E558–E567PubMedGoogle Scholar
  14. 14.
    Garcia-Martinez C, Sibille B, Solanes G, Darimont C, Mace K, Villarroya F, Gomez-Foix AM (2001) Overexpression of UCP3 in cultured human muscle lowers mitochondrial membrane potential, raises ATP/ADP ratio, and favors fatty acid vs. glucose oxidation. FASEB J 15:2033–2035PubMedGoogle Scholar
  15. 15.
    Garnier A, Fortin D, Delomenie C, Momken I, Veksler V, Ventura-Clapier R (2003) Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. J Physiol 551:491–501PubMedCrossRefGoogle Scholar
  16. 16.
    Goormaghtigh E, Huart P, Praet M, Brasseur R, Ruysschaert JM (1990) Structure of the adriamycin-cardiolipin complex. Role in mitochondrial toxicity. Biophys Chem 35:247–257PubMedCrossRefGoogle Scholar
  17. 17.
    Halsall DJ, Luan J, Saker P, Huxtable S, Farooqi IS, Keogh J, Wareham NJ, O’Rahilly S (2001) Uncoupling protein 3 genetic variants in human obesity: the c-55t promoter polymorphism is negatively correlated with body mass index in a UK Caucasian population. Int J Obesity 25:472–477CrossRefGoogle Scholar
  18. 18.
    Hinkle PC (2005) P/O ratios of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1706:1–11PubMedCrossRefGoogle Scholar
  19. 19.
    Hoerter J, M-d-M Gonzalez-Barroso, Couplan E, Mateo P, Gelly C, Cassard-Doulcier A-M, Diolez P, Bouillaud F (2004) Mitochondrial uncoupling protein 1 expressed in the heart of transgenic mice protects against ischemic-reperfusion damage. Circulation 110:528–533PubMedCrossRefGoogle Scholar
  20. 20.
    Ide T, Tsutsui H, Kinugawa S, Utsumi H, Kang D, Hattori N, Uchida K, Arimura K, Egashira K, Takeshita A (1999) Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. Circ Res 85:357–363PubMedGoogle Scholar
  21. 21.
    Jucker BM, Dufour S, Ren J, Cao X, Previs SF, Underhill B, Cadman KS, Shulman GI (2000) Assessment of mitochondrial energy coupling in vivo by 13C/31P NMR. Proc Natl Acad Sci USA 97:6880–6884PubMedCrossRefGoogle Scholar
  22. 22.
    Kashfi K, Israel M, Sweatman TW, Seshadri R, Cook GA (1990) Inhibition of mitochondrial carnitine palmitoyltransferases by adriamycin and adriamycin analogues. Biochem Pharmacol 40:1441–1448PubMedCrossRefGoogle Scholar
  23. 23.
    Kotamraju S, Konorev EA, Joseph J, Kalyanaraman B (2000) Doxorubicin-induced apoptosis in endothelial cells and cardiomyocytes is ameliorated by nitrone spin traps and ebselen. Role of reactive oxygen and nitrogen species. J Biol Chem 275:33585–33592PubMedCrossRefGoogle Scholar
  24. 24.
    Kunisada K, Tone E, Negoro S, Nakaoka Y, Oshima Y, Osugi T, Funamoto M, Izumi M, Fujio Y, Hirota H, Yamauchi-Takihara K (2002) Bcl-xl reduces doxorubicin-induced myocardial damage but fails to control cardiac gene downregulation. Cardiovasc Res 53:936–943PubMedCrossRefGoogle Scholar
  25. 25.
    Lenaz G, Bovina C, D’Aurelio M, Fato R, Formiggini G, Genova ML, Giuliano G, Pich MM, Paolucci U, Castelli GP, Ventura B (2002) Role of mitochondria in oxidative stress and aging. Ann NY Acad Sci 959:199–213PubMedCrossRefGoogle Scholar
  26. 26.
    Lesnefsky EJ, Moghaddas S, Tandler B, Kerner J, Hoppel CL (2001) Mitochondrial dysfunction in cardiac disease: ischemia–reperfusion, aging, and heart failure. J Mol Cell Cardiol 33:1065–1089PubMedCrossRefGoogle Scholar
  27. 27.
    Li T, Danelisen I, Singal PK (2002) Early changes in myocardial antioxidant enzymes in rats treated with adriamycin. Mol Cell Biochem 232:19–26PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y, Zhu H, Kuppusamy P, Roubaud V, Zweier JL, Trush MA (1998) Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems. J Biol Chem 273:2015–2023PubMedCrossRefGoogle Scholar
  29. 29.
    Liu J, Wang C, Murakami Y, Gong G, Ishibashi Y, Prody C, Ochiai K, Bache RJ, Godinot C, Zhang J (2001) Mitochondrial ATPase and high-energy phosphates in failing hearts. Am J Physiol 281:H1319–H1326Google Scholar
  30. 30.
    Liu SS (1997) Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep 17:259–272PubMedCrossRefGoogle Scholar
  31. 31.
    Liu SS (1999) Cooperation of a “reactive oxygen cycle” with the Q cycle and the proton cycle in the respiratory chain—superoxide generating and cycle mechanism in mitochondria. J Bioenerg Biomembr 31:367–376PubMedCrossRefGoogle Scholar
  32. 32.
    Marcillat O, Zhang Y, Davies KJ (1989) Oxidative and non-oxidative mechanisms in the inactivation of cardiac mitochondrial electron transport chain components by doxorubicin. Biochem J 259:181–189PubMedGoogle Scholar
  33. 33.
    McMurray J, Chopra M, Abdullah I, Smith W, Dargie HJ (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14:1493–1498PubMedGoogle Scholar
  34. 34.
    Muhammed H, Ramasarma T, Kurup CK (1983) Inhibition of mitochondrial oxidative phosphorylation by adriamycin. Biochim Biophys Acta 722:43–50PubMedCrossRefGoogle Scholar
  35. 35.
    Negre-Salvayre A, Hirtz C, Carrera G, Cazenave R, Troly M, Salvayre R, Penicaud L, Casteilla L (1997) A role for uncoupling protein-2 as a regulator of mitochondrial hydrogen peroxide generation. FASEB J 11:809–815PubMedGoogle Scholar
  36. 36.
    Neilan TG, Blake SL, Ichinose F, Raher MJ, Buys ES, Jassal DS, Furutani E, Perez-Sanz TM, Graveline A, Janssens SP, Picard MH, Scherrer-Crosbie M, Bloch KD (2007) Disruption of nitric oxide synthase 3 protects against the cardiac injury, dysfunction, and mortality induced by doxorubicin. Circulation 116:506–514PubMedCrossRefGoogle Scholar
  37. 37.
    Nicolay K, de Kruijff B (1987) Effects of Adriamycin on respiratory chain activities in mitochondria from rat liver, rat heart and bovine heart. Evidence for a preferential inhibition of complex III and IV. Biochim Biophys Acta 892:320–330PubMedCrossRefGoogle Scholar
  38. 38.
    Ohkura K, Lee JD, Shimizu H, Nakano A, Uzui H, Horikoshi M, Fujibayashi Y, Yonekura Y, Ueda T (2003) Mitochondrials complex I activity is reduced in latent adriamycin-induced cardiomyopathy of rat. Mol Cell Biochem 248:203–208PubMedCrossRefGoogle Scholar
  39. 39.
    Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B (2001) Uncoupling protein 2, in vivo distribution, induction upon oxidative stress, and evidence for translational regulation. J Biol Chem 276:8705–8712PubMedCrossRefGoogle Scholar
  40. 40.
    Razeghi P, Young ME, Ying J, Depre C, Uray IP, Kolesar J, Shipley GL, Moravec CS, Davies PJ, Frazier OH, Taegtmeyer H (2002) Downregulation of metabolic gene expression in failing human heart before and after mechanical unloading. Cardiology 97:203–209PubMedCrossRefGoogle Scholar
  41. 41.
    Rembish SJ, Trush MA (1994) Further evidence that lucigenin-derived chemiluminescence monitors mitochondrial superoxide generation in rat alveolar macrophages. Free Radic Biol Med 17:117–126PubMedCrossRefGoogle Scholar
  42. 42.
    Russell R, Taegtmeyer H (1992) Coenzyme A sequestration in rat hearts oxidizing ketone bodies. J Clin Invest 89:968–973PubMedCrossRefGoogle Scholar
  43. 43.
    Schrauwen P, Xia J, Walder K, Snitker S, Ravussin E (1999) A novel polymorphism in the proximal UCP3 promoter region: effect on skeletal muscle UCP3 mRNA expression and obesity in male non-diabetic Pima Indians. Int J Obesity 23:1242–1245CrossRefGoogle Scholar
  44. 44.
    Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS (2002) Impact of high-fat diet and antioxidant supplement on mitochondrial functions and gene transcripts in rat muscle. Am J Physiol 282:E1055–E1061Google Scholar
  45. 45.
    Teshima Y, Akao M, Jones SP, Marban E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200PubMedCrossRefGoogle Scholar
  46. 46.
    Thompson KL, Rosenzweig BA, Zhang J, Knapton AD, Honchel R, Lipshultz SE, Retief J, Sistare FD, Herman EH (2009) Early alterations in heart gene expression profiles associated with doxorubicin cardiotoxicity in rats. Cancer Chemother Pharmacol. doi: 10.1007/s00280-009-1164-9
  47. 47.
    Tokarska-Schlattner M, Zaugg M, Zuppinger C, Wallimann T, Schlattner U (2006) New insights into doxorubicin-induced cardiotoxicity: the critical role of cellular energetics. J Mol Cell Cardiol 41:389–405PubMedCrossRefGoogle Scholar
  48. 48.
    Vidal-Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB (2000) Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275:16258–16266PubMedCrossRefGoogle Scholar
  49. 49.
    Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP, Easlick J, Warden CH, Pecqueur C, Raimbault S, Ricquier D, Silver MHK, Shuldiner AR, Solanes G, Lowell BB, Chung WK, Leibel RL, Pratley R, Ravussin E (1998) Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima indians. Hum Mol Genet 7:1431–1435PubMedCrossRefGoogle Scholar
  50. 50.
    Wang GW, Klein JB, Kang YJ (2001) Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther 298:461–468PubMedGoogle Scholar
  51. 51.
    Wibom R, Hultman E (1990) ATP production rate in mitochondria isolated from microsamples of human muscle. Am J Physiol 259:E204–E209PubMedGoogle Scholar
  52. 52.
    Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, Schantz PG (1992) Adaptation of mitochondrial ATP production in human skeletal muscle to endurance training and detraining. J Appl Physiol 73:2004–2010PubMedGoogle Scholar
  53. 53.
    Young ME, Patil S, Ying J, Depre C, Ahuja HS, Shipley GL, Stepkowski SM, Davies PJ, Taegtmeyer H (2001) Uncoupling protein 3 transcription is regulated by peroxisome proliferator-activated receptor α in the adult rodent heart. FASEB J 15:833–845PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Heiko Bugger
    • 1
  • Cinthia Guzman
    • 1
  • Christoph Zechner
    • 1
  • Monica Palmeri
    • 1
  • Kerry S. Russell
    • 1
  • Raymond R. RussellIII
    • 1
  1. 1.Section of Cardiovascular Medicine, Department of Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations