Cancer Chemotherapy and Pharmacology

, Volume 67, Issue 6, pp 1369–1380 | Cite as

p53-dependent anticancer effects of leptomycin B on lung adenocarcinoma

  • Changxia Shao
  • Chuanwen Lu
  • Lixia Chen
  • Patrick P. Koty
  • Everardo Cobos
  • Weimin Gao
Original Article

Abstract

Purpose

Leptomycin B (LMB) and/or its derivatives are considered a novel class of cancer therapeutics through blocking chromosome maintenance region 1, which mediates p53 nuclear export. The objectives of the present study were to first evaluate the cytotoxic effects of LMB on a normal human lung epithelial cell line (BEAS-2B) and three human lung adenocarcinoma cell lines with various p53 status (wild type: A549, mutant: NCI-H522, and null: NCI-H358) and then to identify LMB-induced gene expression alterations in human p53 signaling pathway.

Methods

Cells were treated with 0.01–100 nM LMB or 0.1% ethanol (vehicle control) for 4–72 h. Gene expression analyses using gene array for 84 genes involved in p53-mediated signaling pathways were performed in A549 and NCI-H358 after treatment with 20 nM LMB or vehicle control for 24 h.

Results

Cytotoxic results from MTS assays revealed a significant dose- and time-dependent effect of LMB on all cell lines. However, this effect was more pronounced in cancer cells than in normal cells, and cancer cells with p53 wild type tended to be less sensitive than those with p53 mutant or null. A total of 23 genes, predominantly involved in apoptosis and cell cycle/proliferation, were significantly altered in A549 after LMB treatment, while no strong modulating effects were observed in NCI-H358. The protein expression of two selected genes, p21 and survivin, was further confirmed by Western blots.

Conclusion

Our results suggest that LMB has anti-cancer potential and provides a new regimen of individualized therapy for lung cancer treatment.

Keywords

Cytotoxicity Gene array Leptomycin B Lung adenocarcinoma p53 

Supplementary material

280_2010_1434_MOESM1_ESM.xls (43 kb)
Supplementary material 1 (XLS 43 kb)
280_2010_1434_MOESM2_ESM.xls (49 kb)
Supplementary material 2 (XLS 49 kb)

References

  1. 1.
    Garcia M, Jemal A, Ward EM et al (2007) Global Cancer Facts & Figures 2007. American Cancer Society, AtlantaGoogle Scholar
  2. 2.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249PubMedCrossRefGoogle Scholar
  3. 3.
    Hecht SS (2005) Carcinogenicity studies of inhaled cigarette smoke in laboratory animals: old and new. Carcinogenesis 26:1488–1492PubMedCrossRefGoogle Scholar
  4. 4.
    Devesa SS, Bray F, Vizcaino AP et al (2005) International lung cancer trends by histologic type: male: female differences diminishing and adenocarcinoma rates rising. Int J Cancer 117:294–299PubMedCrossRefGoogle Scholar
  5. 5.
    American Cancer Society (2009) Cancer Facts & Figures 2009. American Cancer Society, AtlantaGoogle Scholar
  6. 6.
    Bunn PA Jr, Thatcher N (2008) Systemic treatment for advanced (stage IIIb/IV) non-small cell lung cancer: more treatment options; more things to consider. Conclusion. Oncologist 13 Suppl 1:37–46PubMedCrossRefGoogle Scholar
  7. 7.
    Ramalingam S, Belani C (2008) Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist 13 Suppl 1:5–13PubMedCrossRefGoogle Scholar
  8. 8.
    Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331PubMedCrossRefGoogle Scholar
  9. 9.
    Greenblatt MS, Bennett WP, Hollstein M et al (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878PubMedGoogle Scholar
  10. 10.
    Gao WM, Mady HH, Yu GY et al (2003) Comparison of p53 mutations between adenocarcinoma and squamous cell carcinoma of the lung: unique spectra involving G to A transitions and G to T transversions in both histologic types. Lung Cancer 40:141–150PubMedCrossRefGoogle Scholar
  11. 11.
    Bennett WP, Hussain SP, Vahakangas KH et al (1999) Molecular epidemiology of human cancer risk: gene-environment interactions and p53 mutation spectrum in human lung cancer. J Pathol 187:8–18PubMedCrossRefGoogle Scholar
  12. 12.
    Foo RS, Nam YJ, Ostreicher MJ et al (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831PubMedCrossRefGoogle Scholar
  13. 13.
    Fried H, Kutay U (2003) Nucleocytoplasmic transport: taking an inventory. Cell Mol Life Sci 60:1659–1688PubMedCrossRefGoogle Scholar
  14. 14.
    Mutka SC, Yang WQ, Dong SD et al (2009) Identification of nuclear export inhibitors with potent anticancer activity in vivo. Cancer Res 69:510–517PubMedCrossRefGoogle Scholar
  15. 15.
    Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nat Rev Cancer 4:106–117PubMedCrossRefGoogle Scholar
  16. 16.
    van der Watt PJ, Maske CP, Hendricks DT et al (2008) The Karyopherin proteins, Crm1 and Karyopherin beta1, are overexpressed in cervical cancer and are critical for cancer cell survival and proliferation. Int J Cancer 124:1829–1840CrossRefGoogle Scholar
  17. 17.
    Shen A, Wang Y, Zhao Y et al (2009) Expression of CRM1 in human gliomas and its significance in p27 expression and clinical prognosis. Neurosurgery 65:153–159 discussion 159–160PubMedCrossRefGoogle Scholar
  18. 18.
    Huang WY, Yue L, Qiu WS et al (2009) Prognostic value of CRM1 in pancreas cancer. Clin Invest Med 32:E315PubMedGoogle Scholar
  19. 19.
    Komiyama K, Okada K, Tomisaka S et al (1985) Antitumor activity of leptomycin B. J Antibiot (Tokyo) 38:427–429Google Scholar
  20. 20.
    Yoshida M, Nishikawa M, Nishi K et al (1990) Effects of leptomycin B on the cell cycle of fibroblasts and fission yeast cells. Exp Cell Res 187:150–156PubMedCrossRefGoogle Scholar
  21. 21.
    Roberts BJ, Hamelehle KL, Sebolt JS et al (1986) In vivo and in vitro anticancer activity of the structurally novel and highly potent antibiotic CI-940 and its hydroxy analog (PD 114, 721). Cancer Chemother Pharmacol 16:95–101PubMedCrossRefGoogle Scholar
  22. 22.
    Macara IG (2001) Transport into and out of the nucleus. Microbiol Mol Biol Rev 65:570–594PubMedCrossRefGoogle Scholar
  23. 23.
    Cook A, Bono F, Jinek M et al (2007) Structural biology of nucleocytoplasmic transport. Annu Rev Biochem 76:647–671PubMedCrossRefGoogle Scholar
  24. 24.
    Hoshino I, Matsubara H, Komatsu A et al (2008) Combined effects of p53 gene therapy and leptomycin B in human esophageal squamous cell carcinoma. Oncology 75:113–119PubMedCrossRefGoogle Scholar
  25. 25.
    Freedman DA, Levine AJ (1998) Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol Cell Biol 18:7288–7293PubMedGoogle Scholar
  26. 26.
    Lecane PS, Kiviharju TM, Sellers RG et al (2003) Leptomycin B stabilizes and activates p53 in primary prostatic epithelial cells and induces apoptosis in the LNCaP cell line. Prostate 54:258–267PubMedCrossRefGoogle Scholar
  27. 27.
    Caglieri A, Goldoni M, De Palma G et al (2008) Exposure to low levels of hexavalent chromium: target doses and comparative effects on two human pulmonary cell lines. Acta Biomed 79 Suppl 1:104–115PubMedGoogle Scholar
  28. 28.
    Smart P, Lane EB, Lane DP et al (1999) Effects on normal fibroblasts and neuroblastoma cells of the activation of the p53 response by the nuclear export inhibitor leptomycin B. Oncogene 18:7378–7386PubMedCrossRefGoogle Scholar
  29. 29.
    Yang B, Eshleman JR, Berger NA et al (1996) Wild-type p53 protein potentiates cytotoxicity of therapeutic agents in human colon cancer cells. Clin Cancer Res 2:1649–1657PubMedGoogle Scholar
  30. 30.
    Giannakakou P, Poy G, Zhan Z et al (2000) Paclitaxel selects for mutant or pseudo-null p53 in drug resistance associated with tubulin mutations in human cancer. Oncogene 19:3078–3085PubMedCrossRefGoogle Scholar
  31. 31.
    Lowe SW, Schmitt EM, Smith SW et al (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849PubMedCrossRefGoogle Scholar
  32. 32.
    Clarke AR, Purdie CA, Harrison DJ et al (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852PubMedCrossRefGoogle Scholar
  33. 33.
    Lowe SW, Ruley HE, Jacks T et al (1993) p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 74:957–967PubMedCrossRefGoogle Scholar
  34. 34.
    Shaw P, Bovey R, Tardy S et al (1992) Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc Natl Acad Sci USA 89:4495–4499PubMedCrossRefGoogle Scholar
  35. 35.
    Kuerbitz SJ, Plunkett BS, Walsh WV et al (1992) Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci USA 89:7491–7495PubMedCrossRefGoogle Scholar
  36. 36.
    Fan S, el-Deiry WS, Bae I et al (1994) p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res 54:5824–5830PubMedGoogle Scholar
  37. 37.
    Wahl AF, Donaldson KL, Fairchild C et al (1996) Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis. Nat Med 2:72–79PubMedCrossRefGoogle Scholar
  38. 38.
    Zhang CC, Yang JM, White E et al (1998) The role of MAP4 expression in the sensitivity to paclitaxel and resistance to vinca alkaloids in p53 mutant cells. Oncogene 16:1617–1624PubMedCrossRefGoogle Scholar
  39. 39.
    Yu X, Robinson JF, Gribble E et al (2008) Gene expression profiling analysis reveals arsenic-induced cell cycle arrest and apoptosis in p53-proficient and p53-deficient cells through differential gene pathways. Toxicol Appl Pharmacol 233:389–403PubMedCrossRefGoogle Scholar
  40. 40.
    Wang XW (1999) Role of p53 and apoptosis in carcinogenesis. Anticancer Res 19:4759–4771PubMedGoogle Scholar
  41. 41.
    Fischer M, Skowron M, Berthold F (2005) Reliable transcript quantification by real-time reverse transcriptase-polymerase chain reaction in primary neuroblastoma using normalization to averaged expression levels of the control genes HPRT1 and SDHA. J Mol Diagn 7:89–96PubMedCrossRefGoogle Scholar
  42. 42.
    Gaj S, Eijssen L, Mensink RP et al (2008) Validating nutrient-related gene expression changes from microarrays using RT(2) PCR-arrays. Genes Nutr 3:153–157PubMedCrossRefGoogle Scholar
  43. 43.
    Shimo A, Nishidate T, Ohta T et al (2007) Elevated expression of protein regulator of cytokinesis 1, involved in the growth of breast cancer cells. Cancer Sci 98:174–181PubMedCrossRefGoogle Scholar
  44. 44.
    Le Gac G, Esteve PO, Ferec C et al (2006) DNA damage-induced down-regulation of human Cdc25C and Cdc2 is mediated by cooperation between p53 and maintenance DNA (cytosine-5) methyltransferase 1. J Biol Chem 281:24161–24170PubMedCrossRefGoogle Scholar
  45. 45.
    Mirza A, McGuirk M, Hockenberry TN et al (2002) Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21:2613–2622PubMedCrossRefGoogle Scholar
  46. 46.
    Tu SP, Jiang XH, Lin MC et al (2003) Suppression of survivin expression inhibits in vivo tumorigenicity and angiogenesis in gastric cancer. Cancer Res 63:7724–7732PubMedGoogle Scholar
  47. 47.
    Knauer SK, Kramer OH, Knosel T et al (2007) Nuclear export is essential for the tumor-promoting activity of survivin. FASEB J 21:207–216PubMedCrossRefGoogle Scholar
  48. 48.
    Saxena A, Rorie CJ, Dimitrova D et al (2006) Nucleolin inhibits Hdm2 by multiple pathways leading to p53 stabilization. Oncogene 25:7274–7288PubMedCrossRefGoogle Scholar
  49. 49.
    Wawrzynow B, Zylicz A, Wallace M et al (2007) MDM2 chaperones the p53 tumor suppressor. J Biol Chem 282:32603–32612PubMedCrossRefGoogle Scholar
  50. 50.
    Ko LJ, Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–1072PubMedCrossRefGoogle Scholar
  51. 51.
    Lee YS, Wan J, Kim BJ et al (2006) Ubiquitin-dependent degradation of p53 protein despite phosphorylation at its N terminus by acetaminophen. J Pharmacol Exp Ther 317:202–208PubMedCrossRefGoogle Scholar
  52. 52.
    Menendez S, Higgins M, Berkson RG et al (2003) Nuclear export inhibitor leptomycin B induces the appearance of novel forms of human Mdm2 protein. Br J Cancer 88:636–643PubMedCrossRefGoogle Scholar
  53. 53.
    Milutinovic S, Knox JD, Szyf M (2000) DNA methyltransferase inhibition induces the transcription of the tumor suppressor p21 (WAF1/CIP1/sdi1). J Biol Chem 275:6353–6359PubMedCrossRefGoogle Scholar
  54. 54.
    Tan HH, Porter AG (2009) p21(WAF1) negatively regulates DNMT1 expression in mammalian cells. Biochem Biophys Res Commun 382:171–176PubMedCrossRefGoogle Scholar
  55. 55.
    Duriez C, Moyret-Lalle C, Falette N et al (2004) BTG2, its family and its tutor. Bull Cancer 91:E242–E253PubMedGoogle Scholar
  56. 56.
    Hay N (2008) p53 strikes mTORC1 by employing sestrins. Cell Metab 8:184–185PubMedCrossRefGoogle Scholar
  57. 57.
    Cooper WA, Kohonen-Corish MR, Zhuang L et al (2008) Role and prognostic significance of tumor necrosis factor-related apoptosis-inducing ligand death receptor DR5 in nonsmall-cell lung cancer and precursor lesions. Cancer 113:135–142PubMedCrossRefGoogle Scholar
  58. 58.
    Jang BC, Paik JH, Jeong HY et al (2004) Leptomycin B-induced apoptosis is mediated through caspase activation and down-regulation of Mcl-1 and XIAP expression, but not through the generation of ROS in U937 leukemia cells. Biochem Pharmacol 68:263–274PubMedCrossRefGoogle Scholar
  59. 59.
    Vigneri P, Wang JY (2001) Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat Med 7:228–234PubMedCrossRefGoogle Scholar
  60. 60.
    Mathupala SP, Ko YH, Pedersen PL (2009) Hexokinase-2 bound to mitochondria: cancer’s stygian link to the “Warburg Effect” and a pivotal target for effective therapy. Semin Cancer Biol 19:17–24PubMedCrossRefGoogle Scholar
  61. 61.
    Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: cancer’s double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786PubMedCrossRefGoogle Scholar
  62. 62.
    Pelaez R, Herrero P, Moreno F (2009) Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway. J Biol Chem 284:20548–20555PubMedCrossRefGoogle Scholar
  63. 63.
    Kim W, Yoon JH, Jeong JM et al (2007) Apoptosis-inducing antitumor efficacy of hexokinase II inhibitor in hepatocellular carcinoma. Mol Cancer Ther 6:2554–2562PubMedCrossRefGoogle Scholar
  64. 64.
    Bihl M, Tamm M, Nauck M et al (1998) Proliferation of human non-small-cell lung cancer cell lines: role of interleukin-6. Am J Respir Cell Mol Biol 19:606–612PubMedGoogle Scholar
  65. 65.
    Regis G, Icardi L, Conti L et al (2009) IL-6, but not IFN-gamma, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing. Leukemia 23:2102–2108PubMedCrossRefGoogle Scholar
  66. 66.
    Moodley YP, Misso NL, Scaffidi AK et al (2003) Inverse effects of interleukin-6 on apoptosis of fibroblasts from pulmonary fibrosis and normal lungs. Am J Respir Cell Mol Biol 29:490–498PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Changxia Shao
    • 1
  • Chuanwen Lu
    • 1
  • Lixia Chen
    • 1
  • Patrick P. Koty
    • 2
  • Everardo Cobos
    • 3
  • Weimin Gao
    • 1
    • 3
  1. 1.Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH)Texas Tech UniversityLubbockUSA
  2. 2.Department of Pediatrics, Section of Medical GeneticsWake Forest University School of MedicineWinston-SalemUSA
  3. 3.Department of Internal MedicineTexas Tech University Health Sciences CenterLubbockUSA

Personalised recommendations