Cancer Chemotherapy and Pharmacology

, Volume 66, Issue 6, pp 1019–1029 | Cite as

Phase I trial of non-cytotoxic suramin as a modulator of docetaxel and gemcitabine therapy in previously treated patients with non-small cell lung cancer

  • Elaine T. Lam
  • Jessie L.- S. Au
  • Gregory A. Otterson
  • M. Guillaume Wientjes
  • Ling Chen
  • Tong Shen
  • Yong Wei
  • Xiaobai Li
  • Tanios Bekaii-Saab
  • Anthony J. Murgo
  • Rhonda R. Jensen
  • Michael Grever
  • Miguel A. Villalona-Calero
Original Article



In preclinical models, non-cytotoxic suramin (concentrations <50 μM) potentiates the activity of multiple chemotherapeutic agents. The present study evaluated the safety and tolerability of suramin in combination with docetaxel or gemcitabine in previously chemotherapy-treated patients with advanced non-small cell lung cancer.


Patients received suramin intravenously in combination with either docetaxel on day 1 or gemcitabine on days 1 and 8, of each 21-day treatment cycle. After 3 cycles, patients with partial response (PR) or better continued on the same combination, whereas patients with stable disease (SD) or worse crossed-over to the other combination. Pharmacokinetic analyses were performed before and after each treatment.


Eighteen patients received a total of 79 courses (37 suramin plus docetaxel, 42 suramin plus gemcitabine). The dose-limiting toxicity (DLT) was febrile neutropenia, observed in three of six patients treated with suramin and docetaxel 75 mg/m2. No DLTs were observed with suramin plus docetaxel 56 mg/m2 or suramin plus gemcitabine 1,250 mg/m2. Common adverse events included neutropenia, thrombocytopenia, anemia, fatigue, nausea, vomiting, skin rash, hyperglycemia, and electrolyte abnormalities. The target plasma suramin concentration range of 10–50 μM was achieved in 90% of treatments. Discernable antitumor activity was noted in 11 patients (2 PR, 9 SD).


Non-cytotoxic suramin, in combination with docetaxel 56 mg/m2 or gemcitabine 1,250 mg/m2, was reasonably well-tolerated with a manageable toxicity profile. Target plasma concentrations were correctly predicted by our previously described dosing nomogram. The observed preliminary evidence of antitumor activity encourages evaluation of this strategy in efficacy trials.


Suramin Docetaxel Gemcitabine Chemosensitizer Modulator Non-small cell lung cancer 



This study was supported by the National Institutes of Health Research Project Cooperative Agreement U01 CA 76576 (PI, Grever) and Research Project Grant R01 CA 93871 (PI, Au). Au and Wientjes have been awarded patents on the use of suramin as a chemosensitizer.


  1. 1.
    Jemal A, Siegel R, Ward E et al (2009) Cancer statistics. CA Cancer J Clin 59:225–249CrossRefPubMedGoogle Scholar
  2. 2.
    Weir HK, Thun MJ, Hankey BF et al (2003) Annual report to the nation on the status of cancer, 1975–2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 95:1276–1299PubMedGoogle Scholar
  3. 3.
    Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med 355:2542–2550CrossRefPubMedGoogle Scholar
  4. 4.
    Kelly K, Crowley J, Bunn PA Jr et al (2001) Randomized phase III trial of paclitaxel plus carboplatin versus vinorelbine plus cisplatin in the treatment of patients with advanced non-small-cell lung cancer: a southwest oncology group trial. J Clin Oncol 19:3210–3218PubMedGoogle Scholar
  5. 5.
    Weick JK, Crowley J, Natale RB et al (1991) A randomized trial of five cisplatin-containing treatments in patients with metastatic non-small cell lung cancer: a southwest oncology group study. J Clin Oncol 9:1157–1162PubMedGoogle Scholar
  6. 6.
    Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 346:92–98CrossRefPubMedGoogle Scholar
  7. 7.
    Cardenal F, Lopez-Cabrerizo MP, Anton A et al (1999) Randomized phase III study of gemcitabine-cisplatin versus etoposide-cisplatin in the treatment of locally advanced or metastatic non-small cell lung cancer. J Clin Oncol 17:12–18PubMedGoogle Scholar
  8. 8.
    Sandler AB, Nemunaitis J, Denham C et al (2000) Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic nonsmall cell lung cancer. J Clin Oncol 18:122–130PubMedGoogle Scholar
  9. 9.
    Crinò L, Mosconi AM, Scagliotti G et al (1999) Gemcitabine as second-line treatment for advanced non-small-cell lung cancer: a phase II trial. J Clin Oncol 17:2081–2085PubMedGoogle Scholar
  10. 10.
    Van Putten JW, Baas P, Codrington H et al (2001) Activity of single-agent gemcitabine as second-line treatment after previous chemotherapy or radiotherapy in advanced non-small cell lung cancer. Lung Cancer 33:289–298CrossRefPubMedGoogle Scholar
  11. 11.
    Fossella FV, DeVore R, Kerr RN et al (2000) Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small cell lung cancer previously treated with platinum-containing chemotherapy regimens. J Clin Oncol 18:2354–2362PubMedGoogle Scholar
  12. 12.
    Dancey J, Shepherd FA, Gralla RJ, Kim YS (2004) Quality of life assessment of second-line docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy: results of a prospective, randomized phase III trial. Lung Cancer 43:183–194CrossRefPubMedGoogle Scholar
  13. 13.
    Shepherd FA, Dancey J, Ramlau R et al (2000) Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J Clin Oncol 18:2095–2103PubMedGoogle Scholar
  14. 14.
    Hawking F (1978) Suramin: with special reference to onchocerciasis. Adv Pharmacol Chemother 15:289–322CrossRefPubMedGoogle Scholar
  15. 15.
    Hosang M (1985) Suramin binds to platelet-derived growth factor and inhibits its biological activity. J Cell Biochem 29:265–273CrossRefPubMedGoogle Scholar
  16. 16.
    Garrett JS, Coughlin SR, Niman HL et al (1984) Blockade of autocrine stimulation in simian sarcoma virus transformed cells reverses down-regulation of platelet-derived growth factor receptors. Proc Natl Acad Sci USA 81:7466–7470CrossRefPubMedGoogle Scholar
  17. 17.
    Pollak M, Richard M (1990) Suramin blockade of insulin-like growth factor I-stimulated proliferation of human osteosarcoma cells. J Natl Cancer Inst 82:1349–1352CrossRefPubMedGoogle Scholar
  18. 18.
    Taylor CW, Lui R, Fanta P, Salmon SE (1992) Effects of suramin on in vitro growth of fresh human tumors. J Natl Cancer Inst 84:489–494CrossRefPubMedGoogle Scholar
  19. 19.
    Rubio GJ, Pinedo HM, Virizuela J et al (1995) Effects of suramin on human lung cancer cell lines. Eur J Cancer 31A:244–251CrossRefPubMedGoogle Scholar
  20. 20.
    Rosen PJ, Mendoza EF, Landaw EM et al (1996) Suramin in hormone-refractory metastatic prostate cancer: a drug with limited efficacy. J Clin Oncol 14:1626–1636PubMedGoogle Scholar
  21. 21.
    Small EJ, Meyer M, Marshall ME et al (2000) Suramin therapy for patients with symptomatic hormone-refractory prostate cancer: results of a randomized phase III trial comparing suramin plus hydrocortisone to placebo plus hydrocortisone. J Clin Oncol 18:1440–1450PubMedGoogle Scholar
  22. 22.
    Mirza MR, Jakobsen E, Pfeiffer P et al (1997) Suramin in non-small cell lung cancer and advanced breast cancer. Two parallel phase II studies. Acta Oncol 36:171–174CrossRefPubMedGoogle Scholar
  23. 23.
    Falcone A, Pfanner E, Cianci C et al (1995) Suramin in patients with metastatic colorectal cancer pretreated with fluoropyrimidine-based chemotherapy. A phase II study. Cancer 75:440–443CrossRefPubMedGoogle Scholar
  24. 24.
    Dreicer R, Smith DC, Williams RD, See WA (1999) Phase II trial of suramin in patients with metastatic renal cell carcinoma. Invest New Drugs 17:183–186CrossRefPubMedGoogle Scholar
  25. 25.
    La Rocca RV, Meer J, Gilliatt RW et al (1990) Suramin-induced polyneuropathy. Neurology 40:954–960PubMedGoogle Scholar
  26. 26.
    Kobayashi K, Weiss RE, Vogelzang NJ et al (1996) Mineralocorticoid insufficiency due to suramin therapy. Cancer 78:2411–2420CrossRefPubMedGoogle Scholar
  27. 27.
    May E, Allolio B (1991) Fatal toxic epidermal necrolysis during suramin therapy. Eur J Cancer 27:1338PubMedGoogle Scholar
  28. 28.
    Horne MK III, Wilson OJ, Cooper M et al (1992) The effect of suramin on laboratory tests of coagulation. Thromb Haemost 67:434–439PubMedGoogle Scholar
  29. 29.
    Figg WD, Cooper MR, Thibault A et al (1994) Acute renal toxicity associated with suramin in the treatment of prostate cancer. Cancer 74:1612–1614CrossRefPubMedGoogle Scholar
  30. 30.
    Song S, Wientjes MG, Gan Y, Au JL (2000) Fibroblast growth factors: an epigenetic mechanism of broad spectrum resistance to anticancer drugs. Proc Natl Acad Sci USA 97:8658–8663CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang Y, Song S, Yang F, Au JL, Wientjes MG (2001) Nontoxic doses of suramin enhance activity of doxorubicin in prostate tumors. J Pharmacol Exp Ther 299:426–433PubMedGoogle Scholar
  32. 32.
    Song S, Wientjes MG, Walsh C, Au JL (2001) Nontoxic doses of suramin enhance activity of paclitaxel against lung metastases. Cancer Res 61:6145–6150PubMedGoogle Scholar
  33. 33.
    Lu Z, Wientjes TS, Au JL (2005) Nontoxic suramin treatments enhance docetaxel activity in chemotherapy-pretreated non-small cell lung xenograft tumors. Pharm Res 22:1069–1078CrossRefPubMedGoogle Scholar
  34. 34.
    Gan Y, Wientjes MG, Au JL (2006) Expression of basic fibroblast growth factor correlates with resistance to paclitaxel in human patient tumors. Pharm Res 23:1324–1331CrossRefPubMedGoogle Scholar
  35. 35.
    Behrens C, Yin HY, Lee JJ et al (2008) Immunohistochemical expression of basic fibroblast growth factor and fibroblast growth factor receptors 1 and 2 in the pathogenesis of lung cancer. Clin Cancer Res 14:6014–6022CrossRefPubMedGoogle Scholar
  36. 36.
    Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216CrossRefPubMedGoogle Scholar
  37. 37.
    Villalona-Calero MA, Wientjes MG, Otterson GA et al (2003) Phase I study of low-dose suramin as a chemosensitizer in patients with advanced non-small cell lung cancer. Clin Cancer Res 9:3303–3311PubMedGoogle Scholar
  38. 38.
    Villalona-Calero MA, Otterson GA, Wientjes MG et al (2008) Noncytotoxic suramin as a chemosensitizer in patients with advanced non-small cell lung cancer: a phase II study. Ann Oncol 19:1903–1909CrossRefPubMedGoogle Scholar
  39. 39.
    Chen D, Song SH, Wientjes MG et al (2006) Nontoxic suramin as a chemosensitizer in patients: dosing nomogram development. Pharm Res 23:1265–1274CrossRefPubMedGoogle Scholar
  40. 40.
    Walsh CT, Wei Y, Wientjes MG, Au JL (2008). Quantitative image analysis of intra-tumoral bFGF level as a molecular marker of paclitaxel resistance. J Transl Med 6:4. Published online 2008 January 18. doi: 10.1186/1479-5876-6-4 Google Scholar
  41. 41.
    Trotti A, Byhardt R, Stetz J et al (2000) Common toxicity criteria: version 2.0. An improved reference for grading the acute effects of cancer treatment: impact on radiotherapy. Int J Radiat Oncol Biol Phys 47:13–47PubMedGoogle Scholar
  42. 42.
    Kassack M, Nickel P (1996) Rapid, highly sensitive gradient narrow-bore high-performance liquid chromatographic determination of suramin and its analogues. J Chromatogr B Biomed Appl 686:275–284CrossRefPubMedGoogle Scholar
  43. 43.
    Gemcitabine (Gemzar®) Prescribing Information, Eli Lilly and Company, 1996 and 2007Google Scholar
  44. 44.
    Docetaxel (Taxotere®) Prescribing Information, Sanofi-Aventis US LLC, 2008Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Elaine T. Lam
    • 1
  • Jessie L.- S. Au
    • 2
  • Gregory A. Otterson
    • 1
  • M. Guillaume Wientjes
    • 2
  • Ling Chen
    • 2
  • Tong Shen
    • 2
  • Yong Wei
    • 2
  • Xiaobai Li
    • 4
  • Tanios Bekaii-Saab
    • 1
  • Anthony J. Murgo
    • 5
  • Rhonda R. Jensen
    • 1
  • Michael Grever
    • 1
  • Miguel A. Villalona-Calero
    • 1
    • 3
    • 6
  1. 1.Department of Internal Medicine, Division of Hematology and OncologyThe Ohio State UniversityColumbusUSA
  2. 2.College of PharmacyThe Ohio State UniversityColumbusUSA
  3. 3.Department of PharmacologyThe Ohio State UniversityColumbusUSA
  4. 4.Center for BiostatisticsThe Ohio State UniversityColumbusUSA
  5. 5.Cancer Therapy Evaluation Program, Division of Cancer Treatment and DiagnosisThe National Cancer InstituteBethesdaUSA
  6. 6.Arthur G. James Cancer HospitalThe Ohio State UniversityColumbusUSA

Personalised recommendations