Cancer Chemotherapy and Pharmacology

, Volume 66, Issue 1, pp 151–158 | Cite as

A dose-finding and pharmacodynamic study of bortezomib in combination with weekly paclitaxel in patients with advanced solid tumors

  • Bhuvaneswari Ramaswamy
  • Tanios Bekaii-Saab
  • Larry J. Schaaf
  • Gregory B. Lesinski
  • David M. Lucas
  • Donn C. Young
  • Amy S. Ruppert
  • John C. Byrd
  • Kristy Culler
  • Diedre Wilkins
  • John J. Wright
  • Michael R. Grever
  • Charles L. Shapiro
Original Article

Abstract

Purpose

A phase I study to determine the maximum tolerated dose (MTD) of bortezomib (B) when combined with weekly paclitaxel in patients with advanced solid tumors.

Patients and methods

Eligible patients received escalating doses of intravenous (IV) bortezomib (0.6–2 mg/m2) on days 2 and 9 and IV paclitaxel at 100 mg/m2 on days 1 and 8 of a 21-day cycle. Dose escalation was based on two end-points: not exceeding 80% 20S-proteasome inhibition (20-S PI) and the development of dose-limiting toxicity defined as grade 3 or greater non-hematologic or grade 4 hematologic toxicities.

Results

Forty-five patients with advanced solid tumors and a median of 3 prior chemotherapy regimens (range 0–9), received 318 doses (median 5, range 1–34) of bortezomib and paclitaxel. Dose-related inhibition of 20-S PI was observed with a maximum inhibition of 70–80% at the MTD of 1.8 mg/m2 of bortezomib. At the MTD (N = 9) the following toxicities were observed: grade 4 neutropenia without fever (n = 2) and cerebrovascular ischemia (n = 1); grade 3 neutropenia (n = 3), diarrhea (n = 2), nausea (n = 1), and fatigue (n = 1); grade 2 fatigue (n = 5), diarrhea (n = 4), and dyspnea (n = 2). There was one partial response in a patient with an eccrine porocarcinoma. Stabilization of disease was observed in 7 (16%) patients, 3 of whom had advanced pancreatic cancer.

Conclusion

Sequential paclitaxel and bortezomib in previously treated patients with advanced solid tumors resulted in acceptable toxicity and no evidence of interaction. The recommended phase II dose of bortezomib in combination with weekly paclitaxel was 1.8 mg/m2.

Keywords

Bortezomib Phase I Solid tumors Paclitaxel 

Notes

Acknowledgments

The project described was supported by Grant Number U01-CA76576 from the National Cancer Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Cancer institute or the National Institutes of Health. The authors wish to thank the patients who participated in this trial; the many nurses, nurse practitioners, and patient care associates who assisted in the care of these patients in the Clinical Treatment Unit, JamesCare Dublin Clinic, and the Immediate Care Center; and acknowledge the contributions of Bill Riordan, Lisa O’Brien, and Jeannie Pierce at Millennium Pharmaceuticals in performing the 20S proteasome assay. The project described was supported by Grant Number U01-CA76576 from the National Cancer Institute.

References

  1. 1.
    Adams J (2003) The proteasome: structure, function, and role in the cell. Cancer Treat Rev 29(Suppl 1):3–9CrossRefPubMedGoogle Scholar
  2. 2.
    Ciechanover A, Schwartz AL (1998) The ubiquitin–proteasome pathway: the complexity and myriad functions of proteins death [comment]. Proc Natl Acad Sci USA 95:2727–2730CrossRefPubMedGoogle Scholar
  3. 3.
    Adams J (2002) Development of the proteasome inhibitor PS-341. Oncologist 7:9–16CrossRefPubMedGoogle Scholar
  4. 4.
    Cusack JC (2003) Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev 29(Suppl 1):21–31CrossRefPubMedGoogle Scholar
  5. 5.
    Nencioni A, Grunebach F, Patrone F et al (2007) Proteasome inhibitors: antitumor effects and beyond. Leukemia 21:30–36CrossRefPubMedGoogle Scholar
  6. 6.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin–proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785CrossRefPubMedGoogle Scholar
  7. 7.
    Ling YH, Liebes L, Ng B et al (2002) PS-341, a novel proteasome inhibitor, induces Bcl-2 phosphorylation and cleavage in association with G2-M phase arrest and apoptosis. Mol Cancer Ther 1:841–849PubMedGoogle Scholar
  8. 8.
    Richardson PG, Sonneveld P, Schuster MW (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma [see comment]. N Engl J Med 352:2487–2498CrossRefPubMedGoogle Scholar
  9. 9.
    Jagannath S, Barlogie B, Berenson J et al (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172CrossRefPubMedGoogle Scholar
  10. 10.
    Richardson PG, Barlogie B, Berenson J (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma [see comment]. N Engl J Med 348:2609–2617CrossRefPubMedGoogle Scholar
  11. 11.
    Millennium Pharmaceuticals I. Velcade Full Prescribing Information. June 2008Google Scholar
  12. 12.
    Papandreou CN, Daliani DD, Nix D et al (2004) Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. J Clin Oncol 22:2108–2121CrossRefPubMedGoogle Scholar
  13. 13.
    Orlowski RZ, Kuhn DJ (2008) Proteasome inhibitors in cancer therapy: lessons from the first decade. Clin Cancer Res 14:1649–1657CrossRefPubMedGoogle Scholar
  14. 14.
    Milano A, Iaffaioli RV, Caponigro F (2007) The proteasome: a worthwhile target for the treatment of solid tumours? Eur J Cancer 43:1125–1133CrossRefPubMedGoogle Scholar
  15. 15.
    Mitsiades CS, McMillin D, Kotoula V et al (2006) Antitumor effects of the proteasome inhibitor bortezomib in medullary and anaplastic thyroid carcinoma cells in vitro. J Clin Endocrinol Metab 91:4013–4021CrossRefPubMedGoogle Scholar
  16. 16.
    Orlowski RZ, Eswara JR, Lafond-Walker A et al (1998) Tumor growth inhibition induced in a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 58:4342–4348PubMedGoogle Scholar
  17. 17.
    Teicher BA, Ara G, Herbst R et al (1999) The proteasome inhibitor PS-341 in cancer therapy. Clin Cancer Res 5:2638–2645PubMedGoogle Scholar
  18. 18.
    Orlowski RZ (1999) The role of the ubiquitin–proteasome pathway in apoptosis. Cell Death Differ 6:303–313CrossRefPubMedGoogle Scholar
  19. 19.
    Cresta SSC, Catapano CV, Gallerani E, Passalacqua D, Rinaldi A, Bertoni F, Vigano L, maur M, Capri G, Maccioni E, Tosi D, Gianni L (2008) Phase I study of bortezomib with weekly paclitaxel in patients with advanced solid tumors. Eur J Cancer. doi: 10.1016/j.ejca.2008.05.022
  20. 20.
    Ma C, Mandrekar SJ, Alberts SR et al (2007) A phase I and pharmacologic study of sequences of the proteasome inhibitor, bortezomib (PS-341, Velcade), in combination with paclitaxel and carboplatin in patients with advanced malignancies. Cancer Chemother Pharmacol 59:207–215CrossRefPubMedGoogle Scholar
  21. 21.
    Canfield SE, Zhu K, Williams SA, McConkey DJ (2006) Bortezomib inhibits docetaxel-induced apoptosis via a p21-dependent mechanism in human prostate cancer cells. Mol Cancer Ther 5:2043–2050CrossRefPubMedGoogle Scholar
  22. 22.
    Adams J (2002) Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14:628–634CrossRefPubMedGoogle Scholar
  23. 23.
    Gehan EA, Tefft MC (2000) Will there be resistance to the RECIST (Response Evaluation Criteria in Solid Tumors)? [comment]. J Natl Cancer Inst 92:179–181CrossRefPubMedGoogle Scholar
  24. 24.
    Lightcap ES, McCormack TA, Pien CS et al (2000) Proteasome inhibition measurements: clinical application. Clin Chem 46:673–683PubMedGoogle Scholar
  25. 25.
    Aron JL, Parthun MR, Marcucci G et al (2003) Depsipeptide (FR901228) induces histone acetylation and inhibition of histone deacetylase in chronic lymphocytic leukemia cells concurrent with activation of caspase 8-mediated apoptosis and down-regulation of c-FLIP protein. Blood 102:652–658CrossRefPubMedGoogle Scholar
  26. 26.
    Yang CH, Gonzalez-Angulo AM, Reuben JM et al (2006) Bortezomib (VELCADE) in metastatic breast cancer: pharmacodynamics, biological effects, and prediction of clinical benefits. Ann Oncol 17:813–817CrossRefPubMedGoogle Scholar
  27. 27.
    Aghajanian C, Soignet S, Dizon DS et al (2002) A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin Cancer Res 8:2505–2511PubMedGoogle Scholar
  28. 28.
    Awada A, Albanell J, Canney PA et al (2008) Bortezomib/docetaxel combination therapy in patients with anthracycline-pretreated advanced/metastatic breast cancer: a phase I/II dose-escalation study. Br J Cancer 98:1500–1507CrossRefPubMedGoogle Scholar
  29. 29.
    Cohen SJ, Engstrom PF, Lewis NL et al (2008) Phase I study of capecitabine and oxaliplatin in combination with the proteasome inhibitor bortezomib in patients with advanced solid tumors. Am J Clin Oncol 31:1–5CrossRefPubMedGoogle Scholar
  30. 30.
    Dreicer R, Petrylak D, Agus D et al (2007) Phase I/II study of bortezomib plus docetaxel in patients with advanced androgen-independent prostate cancer. Clin Cancer Res 13:1208–1215CrossRefPubMedGoogle Scholar
  31. 31.
    Pinkus H, Mehregan AH (1963) Epidermotropic eccrine carcinoma: a case combining features of eccrine poroma and Paget’s dermatosis. Arch Dermatol 88:597–606PubMedGoogle Scholar
  32. 32.
    Snow SN, Reizner GT (1992) Mucinous eccrine carcinoma of the eyelid. Cancer 70:2099–2104CrossRefPubMedGoogle Scholar
  33. 33.
    Robson A, Greene J, Ansari N (2001) Eccrine porocarcinoma (malignant eccrine poroma): a clinicopathologic study of 69 cases [see comment]. Am J Surg Pathol 25:710–720CrossRefPubMedGoogle Scholar
  34. 34.
    Gutermuth J, Audring H, Voit C et al (2004) Antitumour activity of paclitaxel and interferon-alpha in a case of metastatic eccrine porocarcinoma. J Eur Acad Dermatol Venereol 18:477–479CrossRefPubMedGoogle Scholar
  35. 35.
    Holcomb B, Yip-Schneider M, Schmidt CM (2008) The role of nuclear factor kappaB in pancreatic cancer and the clinical applications of targeted therapy. Pancreas 36:225–235CrossRefPubMedGoogle Scholar
  36. 36.
    Ashamalla H, Zaki B, Mokhtar B et al. (2003) Hyperfractionated radiotherapy and paclitaxel for locally advanced/unresectable pancreatic cancer [erratum appears in Int J Radiat Oncol Biol Phys. Mar 15; 55(4):1158]. Int J Radiat Oncol Biol Phys 55: 679–687Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Bhuvaneswari Ramaswamy
    • 1
  • Tanios Bekaii-Saab
    • 1
  • Larry J. Schaaf
    • 1
  • Gregory B. Lesinski
    • 1
  • David M. Lucas
    • 1
  • Donn C. Young
    • 1
  • Amy S. Ruppert
    • 1
  • John C. Byrd
    • 1
  • Kristy Culler
    • 1
  • Diedre Wilkins
    • 1
  • John J. Wright
    • 1
  • Michael R. Grever
    • 1
  • Charles L. Shapiro
    • 1
  1. 1.The Ohio State UniversityColumbusUSA

Personalised recommendations