Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 65, Issue 4, pp 765–773 | Cite as

Safety, tolerability, and pharmacokinetics of the anti-IGF-1R monoclonal antibody figitumumab in patients with refractory adrenocortical carcinoma

  • Paul Haluska
  • Frank Worden
  • David Olmos
  • Donghua Yin
  • David Schteingart
  • Gretchen N. Batzel
  • M. Luisa Paccagnella
  • Johann S. de Bono
  • Antonio Gualberto
  • Gary D. Hammer
Original Article

Abstract

Purpose

Insulin-like growth factor 1 receptor signaling through upregulation of the stimulatory ligand IGF-II has been implicated in the pathogenesis of adrenocortical carcinoma. As there is a paucity of effective therapies, this dose expansion cohort of a phase 1 study was undertaken to determine the safety, tolerability, pharmacokinetics, and effects on endocrine markers of figitumumab in patients with adrenocortical carcinoma.

Methods

Figitumumab was administered on day 1 of each 21-day cycle at the maximal feasible dose (20 mg/kg) to a cohort of patients with metastatic, refractory adrenocortical carcinoma. Serum glucose, insulin, and growth hormone were measured pre-study, at cycle 4 and study end. Pharmacokinetic evaluation was performed during cycles 1 and 4.

Results

Fourteen patients with adrenocortical carcinoma received 50 cycles of figitumumab at the 20 mg/kg. Treatment-related toxicities were generally mild and included hyperglycemia, nausea, fatigue, and anorexia. Single episodes of grade 4 hyperuricemia, proteinuria, and elevated gamma-glutamyltransferase were observed. Pharmacokinetics of figitumumab was comparable to patients with solid tumors other than adrenocortical carcinoma. Treatment with figitumumab increased serum insulin and growth hormone levels. Eight of 14 patients (57%) had stable disease.

Conclusions

The side effect profile and pharmacokinetics of figitumumab were similar in patients with adrenocortical carcinoma in comparison to patients with other solid tumors. While hyperglycemia was the most common adverse event, no clear patterns predicting severity were observed. The majority of patients receiving protocol therapy with single agent figitumumab experienced stability of disease, warranting further evaluation.

Keywords

IGF-1R Adrenocortical carcinoma Monoclonal antibody CP-751,871 Figitumumab 

Notes

Acknowledgement

Paul Haluska and Johann S. de Bono received research funds from Pfizer Inc.

References

  1. 1.
    Le Roith D (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl J Med 336(9):633–640CrossRefPubMedGoogle Scholar
  2. 2.
    Cardillo MR, Monti S, Di Silverio F, Gentile V, Sciarra F, Toscano V (2003) Insulin-like growth factor (IGF)-I, IGF-II and IGF type I receptor (IGFR-I) expression in prostatic cancer. Anticancer Res 23(5A):3825–3835PubMedGoogle Scholar
  3. 3.
    Chang YS, Kong G, Sun S, Liu D, El-Naggar AK, Khuri FR et al (2002) Clinical significance of insulin-like growth factor-binding protein-3 expression in stage I non-small cell lung cancer. Clin Cancer Res 8(12):3796–3802PubMedGoogle Scholar
  4. 4.
    Durai R, Yang W, Gupta S, Seifalian AM, Winslet MC (2005) The role of the insulin-like growth factor system in colorectal cancer: review of current knowledge. Int J Colorectal Dis 20(3):203–220CrossRefPubMedGoogle Scholar
  5. 5.
    Hankinson SE, Willett WC, Colditz GA, Hunter DJ, Michaud DS, Deroo B et al (1998) Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet 351(9113):1393–1396CrossRefPubMedGoogle Scholar
  6. 6.
    Kalli KR, Falowo OI, Bale LK, Zschunke MA, Roche PC, Conover CA (2002) Functional insulin receptors on human epithelial ovarian carcinoma cells: implications for IGF-II mitogenic signaling. Endocrinology 143(9):3259–3267CrossRefPubMedGoogle Scholar
  7. 7.
    Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y, Miller JS, Yee D (2003) A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res 63(3):627–635PubMedGoogle Scholar
  8. 8.
    Abe S, Funato T, Takahashi S, Yokoyama H, Yamamoto J, Tomiya Y et al (2006) Increased expression of insulin-like growth factor i is associated with Ara-C resistance in leukemia. Tohoku J Exp Med 209(3):217–228CrossRefPubMedGoogle Scholar
  9. 9.
    Allen GW, Saba C, Armstrong EA, Huang SM, Benavente S, Ludwig DL et al (2007) Insulin-like growth factor-I receptor signaling blockade combined with radiation. Cancer Res 67(3):1155–1162CrossRefPubMedGoogle Scholar
  10. 10.
    Camirand A, Lu Y, Pollak M (2002) Co-targeting HER2/ErbB2 and insulin-like growth factor-1 receptors cause synergistic inhibition of growth in HER2-overexpressing breast cancer cells. Med Sci Monit 8(12):BR521–BR526PubMedGoogle Scholar
  11. 11.
    Desbois-Mouthon C, Cacheux W, Blivet-Van Eggelpoel MJ, Barbu V, Fartoux L, Poupon R et al (2006) Impact of IGF-1R/EGFR cross-talks on hepatoma cell sensitivity to gefitinib. Int J Cancer 119(11):2557–2566CrossRefPubMedGoogle Scholar
  12. 12.
    Gee JM, Robertson JF, Gutteridge E, Ellis IO, Pinder SE, Rubini M et al (2005) Epidermal growth factor receptor/HER2/insulin-like growth factor receptor signalling and oestrogen receptor activity in clinical breast cancer. Endocr Relat Cancer 12(suppl 1):S99–S111CrossRefPubMedGoogle Scholar
  13. 13.
    Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI (2005) Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 146(11):4609–4618CrossRefPubMedGoogle Scholar
  14. 14.
    Wan X, Helman LJ (2002) Effect of insulin-like growth factor II on protecting myoblast cells against cisplatin-induced apoptosis through p70 S6 kinase pathway. Neoplasia 4(5):400–408CrossRefPubMedGoogle Scholar
  15. 15.
    Wiseman LR, Johnson MD, Wakeling AE, Lykkesfeldt AE, May FE, Westley BR (1993) Type I IGF receptor and acquired tamoxifen resistance in oestrogen-responsive human breast cancer cells. Eur J Cancer 29A(16):2256–2264CrossRefPubMedGoogle Scholar
  16. 16.
    Yin D, Tamaki N, Parent AD, Zhang JH (2005) Insulin-like growth factor-I decreased etoposide-induced apoptosis in glioma cells by increasing bcl-2 expression and decreasing CPP32 activity. Neurol Res 27(1):27–35CrossRefPubMedGoogle Scholar
  17. 17.
    Kurmasheva RT, Houghton PJ (2006) IGF-I mediated survival pathways in normal and malignant cells. Biochim Biophys Acta 1766(1):1–22PubMedGoogle Scholar
  18. 18.
    Samani AA, Yakar S, Leroith D, Brodt P (2007) The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 28(1):20–47CrossRefPubMedGoogle Scholar
  19. 19.
    Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518CrossRefPubMedGoogle Scholar
  20. 20.
    Icard P, Goudet P, Charpenay C, Andreassian B, Carnaille B, Chapuis Y et al (2001) Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group. World J Surg 25(7):891–897CrossRefPubMedGoogle Scholar
  21. 21.
    Wajchenberg BL, Albergaria Pereira MA, Medonca BB, Latronico AC, Campos Carneiro P, Alves VA et al (2000) Adrenocortical carcinoma: clinical and laboratory observations. Cancer 88(4):711–736CrossRefPubMedGoogle Scholar
  22. 22.
    Kirschner LS (2006) Emerging treatment strategies for adrenocortical carcinoma: a new hope. J Clin Endocrinol Metab 91(1):14–21CrossRefPubMedGoogle Scholar
  23. 23.
    Terzolo M, Angeli A, Fassnacht M, Daffara F, Tauchmanova L, Conton PA et al (2007) Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med 356(23):2372–2380CrossRefPubMedGoogle Scholar
  24. 24.
    Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL et al (2003) Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162(2):521–531PubMedGoogle Scholar
  25. 25.
    Velazquez-Fernandez D, Laurell C, Geli J, Hoog A, Odeberg J, Kjellman M et al (2005) Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138(6):1087–1094CrossRefPubMedGoogle Scholar
  26. 26.
    West AN, Neale GA, Pounds S, Figueredo BC, Rodriguez Galindo C, Pianovski MA et al (2007) Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67(2):600–608CrossRefPubMedGoogle Scholar
  27. 27.
    Weber MM, Auernhammer CJ, Kiess W, Engelhardt D (1997) Insulin-like growth factor receptors in normal and tumorous adult human adrenocortical glands. Eur J Endocrinol 136(3):296–303CrossRefPubMedGoogle Scholar
  28. 28.
    Cohen BD, Baker DA, Soderstrom C, Tkalcevic G, Rossi AM, Miller PE et al (2005) Combination therapy enhances the inhibition of tumor growth with the fully human anti-type 1 insulin-like growth factor receptor monoclonal antibody CP-751, 871. Clin Cancer Res 11(5):2063–2073CrossRefPubMedGoogle Scholar
  29. 29.
    Haluska P, Shaw HM, Batzel GN, Yin D, Molina JR, Molife LR et al (2007) Phase I dose escalation study of the anti insulin-like growth factor-I receptor monoclonal antibody CP-751,871 in patients with refractory solid tumors. Clin Cancer Res 13(19):5834–5840CrossRefPubMedGoogle Scholar
  30. 30.
    Barlaskar FM, Spalding AC, Heaton JH, Kuick R, Kim AC, Thomas DG et al (2008) Preclinical targeting of the type 1 insulin-like growth factor receptor in adrenocortical carcinoma. J Clin Endocrinol Metab 94(1):204–212CrossRefPubMedGoogle Scholar
  31. 31.
    Gibaldi M, Perrier D (1982) Pharmacokinetics, 2nd edn. Marcel Dekker, New York (NY)Google Scholar
  32. 32.
    Lacy MQ, Alsina M, Fonseca R, Paccagnella ML, Melvin CL, Yin D et al (2008) Phase I, pharmacokinetic and pharmacodynamic study of the anti-insulin-like growth factor type 1 Receptor monoclonal antibody CP-751,871 in patients with multiple myeloma. J Clin Oncol 26(19):3196–3203CrossRefPubMedGoogle Scholar
  33. 33.
    Laron Z, Klinger B, Erster B, Anin S (1988) Effect of acute administration of insulin-like growth factor I in patients with Laron-type dwarfism. Lancet 2(8621):1170–1172CrossRefPubMedGoogle Scholar
  34. 34.
    Di Cola G, Cool MH, Accili D (1997) Hypoglycemic effect of insulin-like growth factor-1 in mice lacking insulin receptors. J Clin Invest 99(10):2538–2544CrossRefPubMedGoogle Scholar
  35. 35.
    Gronborg M, Wulff BS, Rasmussen JS, Kjeldsen T, Gammeltoft S (1993) Structure-function relationship of the insulin-like growth factor-I receptor tyrosine kinase. J Biol Chem 268(31):23435–23440PubMedGoogle Scholar
  36. 36.
    Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D et al (1998) A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2(5):559–569CrossRefPubMedGoogle Scholar
  37. 37.
    Chang PY, Benecke H, Le Marchand-Brustel Y, Lawitts J, Moller DE (1994) Expression of a dominant-negative mutant human insulin receptor in the muscle of transgenic mice. J Biol Chem 269(23):16034–16040PubMedGoogle Scholar
  38. 38.
    Karp DD, Paz-Ares LG, Novello S, Haluska P, Garland L, Cardenal F et al (2009) Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J Clin Oncol 27(15):2516–2522CrossRefPubMedGoogle Scholar
  39. 39.
    Gualberto A, Melvin CL, Dean A, Ang AL, Reynolds JM, Lee AV et al (2008) Characterization of NSCLC patients responding to anti-IGF-IR therapy. J Clin Oncol 26:8000Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Paul Haluska
    • 1
  • Frank Worden
    • 2
  • David Olmos
    • 3
  • Donghua Yin
    • 4
  • David Schteingart
    • 2
  • Gretchen N. Batzel
    • 1
  • M. Luisa Paccagnella
    • 4
  • Johann S. de Bono
    • 3
  • Antonio Gualberto
    • 4
  • Gary D. Hammer
    • 2
  1. 1.Division of Medical OncologyMayo Clinic College of MedicineRochesterUSA
  2. 2.University of Michigan Medical SchoolAnn ArborUSA
  3. 3.Royal Marsden NHS Foundation TrustLondonUK
  4. 4.Pfizer Global Research and DevelopmentNew LondonUSA

Personalised recommendations