Tyrosine kinase inhibitors and multidrug resistance proteins: interactions and biological consequences

  • Amalia Azzariti
  • Letizia Porcelli
  • Grazia M. Simone
  • Anna E. Quatrale
  • Nicola A. Colabufo
  • Francesco Berardi
  • Roberto Perrone
  • Massimo Zucchetti
  • Maurizio D’Incalci
  • Jian Ming Xu
  • Angelo Paradiso
Original Article


Although multidrug resistance (MDR) proteins are known to play a role in drug resistance and modification pharmacodynamic characteristics of certain conventional chemotherapeutics, information about their interactions with tyrosine kinase inhibitors (TKIs) remains fragmentary and somewhat controversial. The chronic administration of TKIs in many clinical situations strongly suggests that any possible interactions with MDR transporters should be studied as a function of time. For example, short periods of exposure to TKIs could provide insights into the nature of the binding to MDR-related proteins, either as substrates or as inhibitors, whereas prolonged exposure to TKIs could provide insights into cellular responses to binding/inhibition of MDR-related proteins. In this report, we provide evidence that suggests that both Gefitinib and Vandetanib may act as transported substrates for Breast Cancer Resistance Protein (BCRP, ABCG2). Conversely, the interaction of Gefitinib and Vandetanib with P-glycoprotein (PgP, MDR1) appeared to be as inhibitors alone. Consistent with this, short periods of exposure (≤24 h) to either Gefitinib or Vandetanib increased the effectiveness of SN-38, the active metabolite of CPT-11. Conversely, prolonged exposure (5 days) decreased SN-38 effectiveness, and was associated with BCRP up-regulation and reduced cell accumulation in S-phase, possibly though reduced intracellular accumulation of SN-38. This report underlines the needs for more detailed characterisation new biologically targeted anticancer drugs, in particular analysing periods of both short and prolonged drug exposure reflecting potentially distinct situations in the clinic in order to optimise future development in combination with established chemotherapeutic approaches.


Gefitinib Vandetanib Resistance BCRP P-glycoprotein 



We thank Dr. Andy Ryan (Astra Zeneca, Macclesfield, Cheshire, United Kingdom) for the helpful review of the manuscript. This study was supported by grants from the Italian Ministry of Health (Project of Integrated Program, 2006).


  1. 1.
    Zhong H, Bowen JP (2007) Molecular design and clinical development of VEGFR kinase inhibitors. Curr Top Med Chem 7:1379–1393CrossRefPubMedGoogle Scholar
  2. 2.
    Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67:2045–2075CrossRefPubMedGoogle Scholar
  3. 3.
    Ono M, Kuwano M (2006) Molecular mechanisms of epidermal growth factor receptor (EGFR) activation and response to gefitinib and other EGFR-targeting drugs. Clin Cancer Res 12:7242–7251CrossRefPubMedGoogle Scholar
  4. 4.
    Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A (2006) The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochim Biophys Acta 1766:120–139PubMedGoogle Scholar
  5. 5.
    Giannelli G, Azzariti A, Fransvea E, Porcelli L, Antonaci S, Paradiso A (2004) Laminin-5 offsets the efficacy of gefitinib (‘Iressa’) in hepatocellular carcinoma cells. Br J Cancer 91:1964–1969CrossRefPubMedGoogle Scholar
  6. 6.
    Giannelli G, Azzariti A, Sgarra C, Porcelli L, Antonaci S, Paradiso A (2006) ZD6474 inhibits proliferation and invasion of human hepatocellular carcinoma cells. Biochem Pharmacol 71:479–485CrossRefPubMedGoogle Scholar
  7. 7.
    Giannelli G, Sgarra C, Porcelli L, Azzariti A, Antonaci S, Paradiso A (2008) EGFR and VEGFR as potential target for biological therapies in HCC cells. Cancer Lett 262:257–264CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann S, Gläser S, Wunderlich A et al (2006) Targeting the EGF/VEGF-R system by tyrosine-kinase inhibitors–a novel antiproliferative/antiangiogenic strategy in thyroid cancer. Langenbecks Arch Surg 391:589–596CrossRefPubMedGoogle Scholar
  9. 9.
    Azzariti A, Porcelli L, Gatti G, Nicolin A, Paradiso A (2008) Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol 75:1035–1044CrossRefPubMedGoogle Scholar
  10. 10.
    Leggas M, Panetta JC, Zhuang Y et al (2006) Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 66:4802–4807CrossRefPubMedGoogle Scholar
  11. 11.
    Azzariti A, Porcelli L, Xu JM, Simone GM, Paradiso A (2006) Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474: Cytotoxic and biomolecular effects. World J Gastroenterol 12:5140–5147PubMedGoogle Scholar
  12. 12.
    Shi Z, Peng XX, Kim IW et al (2007) Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 67:11012–11020CrossRefPubMedGoogle Scholar
  13. 13.
    Yanase K, Tsukahara S, Asada S, Ishikawa E, Imai Y, Sugimoto Y (2004) Gefitinib reverses breast cancer resistance protein-mediated drug resistance. Mol Cancer Ther 3:1119–1125PubMedGoogle Scholar
  14. 14.
    Nakamura Y, Oka M, Soda H et al (2005) Gefitinib (“Iressa”, ZD1839), an epidermal growth factor receptor tyrosine kinase inhibitor, reverses breast cancer resistance protein/ABCG2-mediated drug resistance. Cancer Res 65:1541–1546CrossRefPubMedGoogle Scholar
  15. 15.
    Elkind NB, Szentpétery Z, Apáti A et al (2005) Multidrug transporter ABCG2 prevents tumor cell death induced by the epidermal growth factor receptor inhibitor Iressa (ZD1839, Gefitinib). Cancer Res 65:1770–1777CrossRefPubMedGoogle Scholar
  16. 16.
    Lemos C, Jansen G, Peters GJ (2008) Drug transporters: recent advances concerning BCRP and tyrosine kinase inhibitors. Br J Cancer 98:857–862CrossRefPubMedGoogle Scholar
  17. 17.
    Italiano A, Besse B, Planchard D, Soria JC (2007) Targeting epidermal growth factor receptor in non-small cell lung cancer: current advances and perspectives. Bull Cancer 94(7 Suppl):F177–F188PubMedGoogle Scholar
  18. 18.
    O’Connor R (2007) The pharmacology of cancer resistance. Anticancer Res 27:1267–1272PubMedGoogle Scholar
  19. 19.
    Gillet JP, Efferth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta 1775:237–262PubMedGoogle Scholar
  20. 20.
    Azzariti A, Colabufo NA, Berardi F et al (2006) Cyclohexylpiperazine derivative PB28, a sigma2 agonist and sigma1 antagonist receptor, inhibits cell growth, modulates P-glycoprotein, and synergizes with anthracyclines in breast cancer. Mol Cancer Ther 5:1807–1816CrossRefPubMedGoogle Scholar
  21. 21.
    Kitazaki T, Oka M, Nakamura Y et al (2005) Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 49:337–343CrossRefPubMedGoogle Scholar
  22. 22.
    Mi Y, Lou L (2007) ZD6474 reverses multidrug resistance by directly inhibiting the function of P-glycoprotein. Br J Cancer 97:934–940CrossRefPubMedGoogle Scholar
  23. 23.
    Azzariti A, Xu JM, Porcelli L, Paradiso A (2004) The schedule-dependent enhanced cytotoxic activity of 7-ethyl-10-hydroxy-camptothecin (SN-38) in combination with Gefitinib (Iressa, ZD1839). Biochem Pharmacol 68:135–144CrossRefPubMedGoogle Scholar
  24. 24.
    Colabufo NA, Berardi F, Cantore M et al (2008) 4-Biphenyl and 2-naphthyl substituted 6, 7-dimethoxytetrahydroisoquinoline derivatives as potent P-gp modulators. Bioorg Med Chem 16:3732–3743CrossRefPubMedGoogle Scholar
  25. 25.
    Rautio J, Humphreys JE, Webster LO et al (2006) In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: a recommendation for probe substrates. Drug Metab Dispos 34:786–792CrossRefPubMedGoogle Scholar
  26. 26.
    Kangas L, Grönroos M, Nieminem AL (1984) Bioluminescence of cellular ATP: a new method for evaluating agents in vitro. Med Biol 62:338–343PubMedGoogle Scholar
  27. 27.
    Taub ME, Podila L, Almeida I (2005) Functional assessment of multiple P-glycoprotein (P-gp) probe substrate: influence of cell line and modulator concentration on P-gp activity. Drug Metab Dispos 33:1679–1687CrossRefPubMedGoogle Scholar
  28. 28.
    Colabufo NA, Berardi F, Cantore M et al (2008) Small P-gp modulating molecules: SAR studies on tetrahydroisoquinoline derivatives. Bioorg Med Chem 16:362–373CrossRefPubMedGoogle Scholar
  29. 29.
    Polli JW, Wring SA, Humphreys JE et al (2001) Rational use of in vitro P-glycoprotein assays in drug discovery. J Pharmacol Exp Ther 299:620–628PubMedGoogle Scholar
  30. 30.
    Wang X, Morris ME (2007) Effects of the flavonoid chrysin on nitrofurantoin pharmacokinetics in rats: potential involvement of ABCG2. Drug Metab Dispos 35:268–274CrossRefPubMedGoogle Scholar
  31. 31.
    Wang Q, Strab R, Kardos P et al (2008) Application and limitation of inhibitors in drug-transporter interactions studies. Int J Pharm 356:12–18CrossRefPubMedGoogle Scholar
  32. 32.
    Lopez JP, Wang-Rodriguez J, Chang C et al (2007) Gefitinib inhibition of drug resistance to doxorubicin by inactivating ABCG2 in thyroid cancer cell lines. Arch Otolaryngol Head Neck Surg 133:1022–1027CrossRefPubMedGoogle Scholar
  33. 33.
    Nagashima S, Soda H, Oka M et al (2006) BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer. Cancer Chemother Pharmacol 58:594–600CrossRefPubMedGoogle Scholar
  34. 34.
    Liu H, Cheng D, Weichel AK et al (2006) Cooperative effect of gefitinib and fumitremorgin c on cell growth and chemosensitivity in estrogen receptor alpha negative fulvestrant-resistant MCF-7 cells. Int J Oncol 29:1237–1246PubMedGoogle Scholar
  35. 35.
    Wedge SR, Ogilvie DJ, Dukes M et al (2002) ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Res 62:4645–4655PubMedGoogle Scholar
  36. 36.
    Wakeling AE, Guy SP, Woodburn JR et al (2002) ZD1839 (Iressa): an orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62:5749–5754PubMedGoogle Scholar
  37. 37.
    Usuda J, Ohira T, Suga Y et al (2007) Breast cancer resistance protein (BCRP) affected acquired resistance to gefitinib in a “never-smoked” female patient with advanced non-small cell lung cancer. Lung Cancer 58:296–299CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Amalia Azzariti
    • 1
  • Letizia Porcelli
    • 1
  • Grazia M. Simone
    • 1
  • Anna E. Quatrale
    • 1
  • Nicola A. Colabufo
    • 2
  • Francesco Berardi
    • 2
  • Roberto Perrone
    • 2
  • Massimo Zucchetti
    • 3
  • Maurizio D’Incalci
    • 3
  • Jian Ming Xu
    • 4
  • Angelo Paradiso
    • 1
  1. 1.Clinical Experimental Oncology LaboratoryNational Cancer InstituteBariItaly
  2. 2.Department Farmaco ChimicoUniversity of BariBariItaly
  3. 3.Mario Negri Institute for Pharmacological ResearchMilanItaly
  4. 4.Beijing 307 Hospital Cancer CenterBeijingChina

Personalised recommendations