Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 64, Issue 3, pp 529–538 | Cite as

Evaluation of the antitumoral effect of dihydrocucurbitacin-B in both in vitro and in vivo models

  • Jarbas Mota Siqueira
  • Andressa Córneo Gazola
  • Mareni Rocha Farias
  • Lëonid Volkov
  • Nathalie Rivard
  • Artur José de Brum-Fernandes
  • Rosa Maria Ribeiro-do-ValleEmail author
Original Article

Abstract

Aims

We evaluated both in vitro and in vivo antitumoral properties of an isolated compound from Wilbrandia ebracteata, dihydrocucurbitacin-B (DHCB), using B16F10 cells (murine melanoma).

Materials and methods

We made use of MTT and 3H-Thymidine assays to investigate the cell viability and cell proliferation, flow cytometry analysis to monitor cell cycle and apoptosis, western blot analysis to evaluate the expression of cell cycle proteins, imunofluorescence analysis and in vivo tumor growth and metastasis.

Results

Dihydrocucurbitacin-B significantly reduced cell proliferation without important effects on cells viability. DHCB lead cells to accumulate in G2/M phases accompanied by the appearance of polyploid cells, confirmed by fluorescence assays that demonstrated a remarkable alteration in the cell cytoskeleton and formation of binuclear cells. Annexin-V-FITC incorporation demonstrated that DHCB did not induce apoptosis. About 10 μg/mL DHCB was found to decrease cyclin-A, and especially in cyclin-B1. The in vivo experiments showed that DHCB treatment (once a day up to 12 days; p.o.) was able to reduce the tumor growth and lung metastasis up to 83.5 and 50.3%, respectively.

Conclusions

Dihydrocucurbitacin-B reduces cell proliferation due to a decrease in the expression of cyclins, mainly cyclin-B1 and disruption of the actin cytoskeleton, arresting B16F10 cells in G2/M phase. Taken together, the in vitro and in vivo experiments suggest that DHCB was effective against cancer, however, it remains to be proved if DHCB will be a good candidate for drug development.

Keywords

Dihydrocucurbitacin-B Cytoskeleton Cyclins Wilbrandia ebracteata 

Notes

Acknowledgments

This study was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa Científica e Tecnológica de Santa Catarina (FAPESC) and Université de Sherbrooke, QC, Canada.

References

  1. 1.
    Malumbres M, Carnero A (2003) Cell cycle deregulation: a common motif in cancer. Prog Cell Cycle Res 5:5–18PubMedGoogle Scholar
  2. 2.
    Pines J (1995) Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J 308(Pt 3):697–711PubMedGoogle Scholar
  3. 3.
    Deshpande A, Sicinski P, Hinds PW (2005) Cyclins and cdks in development and cancer: a perspective. Oncogene 24(17):2909–2915PubMedCrossRefGoogle Scholar
  4. 4.
    Balunas MJ, Kinghorn AD (2005) Drug discovery from medicinal plants. Life Sci 78(5):431–441PubMedCrossRefGoogle Scholar
  5. 5.
    van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R (2004) The Catharanthus alkaloids: pharmacognosy and biotechnology. Curr Med Chem 11(5):607–628CrossRefGoogle Scholar
  6. 6.
    Gordaliza M, Garcia PA, del Corral JM, Castro MA, Gomez-Zurita MA (2004) Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44(4):441–459PubMedCrossRefGoogle Scholar
  7. 7.
    Oberlies NH, Kroll DJ (2004) Camptothecin and taxol: historic achievements in natural products research. J Nat Prod 67(2):129–135PubMedCrossRefGoogle Scholar
  8. 8.
    Lavie D, Glotter E (1971) The cucurbitanes, a group of tetracyclic triterpenes. Fortschr Chem Org Naturst 29:307–362PubMedGoogle Scholar
  9. 9.
    Tehila TS, Shlomo G, Sara D, Hugo EG, Margalit B (2007) Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells. Biochem Pharmacol 73:56–67CrossRefGoogle Scholar
  10. 10.
    Blaskovich MA, Sun J, Cantor A, Turkson J, Jove R, Sebti SM (2003) Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63:1270–1279PubMedGoogle Scholar
  11. 11.
    Sun J, Blaskovich MA, Jove R, Livingston SK, Coppola D, Sebti SM et al (2005) Cucurbitacin Q: a selective STAT3 activation inhibitor with potent antitumor activity. Oncogene 24:3236–3245PubMedCrossRefGoogle Scholar
  12. 12.
    Duncan KL, Duncan MD, Alley MC, Sausville EA (1996) Cucurbitacin E-induced disruption of the actin and vimentin cytoskeleton in prostate carcinoma cells. Biochem Pharmacol 52:1553–1560PubMedCrossRefGoogle Scholar
  13. 13.
    Shi YR, Seung HL, Sang UC, Chong OL, Zaesung N, Jong WA (1994) Antitumor activity of Trichosanthes kirilowii. Arch Pharmacol Res 17:348–353CrossRefGoogle Scholar
  14. 14.
    Siqueira JM, Peters RR, Gazola AC, Krepsky PB, Farias MR, Rae GA, Brum-Fernandes AJ, Ribeiro-do-Valle RM (2007) Anti-inflammatory effects of a triterpenoid isolated from Wilbrandia ebracteata Cogn. Life Sci 80:1382–1387PubMedCrossRefGoogle Scholar
  15. 15.
    Escandell JM, Recio MC, Máñez S, Giner RM, Cerdás-Nicolás M, Ríos JL (2006) Dihydrocucurbitacin B, isolated from Cayaponia tayuya, reduces damage in adjuvant-induced arthritis. Eur J Pharmacol 532:145–154PubMedCrossRefGoogle Scholar
  16. 16.
    Yang L, Wu S, Zhang Q, Liu F, Wu P (2007) 23, 24-Dihydrocucurbitacin B induces G2/M cell-cycle arrest and mitochondria-dependent apoptosis in human breast cancer cells (Bcap37). Cancer Lett 256:267–278PubMedCrossRefGoogle Scholar
  17. 17.
    Farias MR, Schenkel EP, Mayer R, Rücker G (1993) Cucurbitacins as constituents of Wilbrandia ebracteata. Planta Med 59:272–275PubMedCrossRefGoogle Scholar
  18. 18.
    Mosmann T (1982) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63CrossRefGoogle Scholar
  19. 19.
    Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356PubMedCrossRefGoogle Scholar
  20. 20.
    Naito K, Skog S, Tribukait B, Andersson L, Hisazumi H (1987) Cell cycle related [3H]thymidine uptake and its significance for the incorporation into DNA. Cell Tissue Kinet 20(4):447–457PubMedGoogle Scholar
  21. 21.
    Schenkel EP, Farias MR, Mayer R, Breitmaier E, Rücker G (1992) Cucurbitacins from Wilbrandia ebracteata. Phytochemistry 31:1329–1333CrossRefGoogle Scholar
  22. 22.
    Peters RR, Farias MR, Ribeiro-do-Vale RM (1997) Anti-inflammatory and analgesic effects of cucurbitacins from W. ebracteata. Planta Med 63:525–528PubMedCrossRefGoogle Scholar
  23. 23.
    Peters RR, Saleh TF, Lora M, Patry C, de Brum-Fernandes AJ, Farias MR, Ribeiro-do-Vale RM (1999) Anti-inflammatory effects of the products from W. ebracteata on carrageenan-induced pleurisy in mice. Life Sci 64(26):2429–2437PubMedCrossRefGoogle Scholar
  24. 24.
    Peters RR, Krepsky PB, Siqueira-Junior JM, Rocha JCS, Bezerra MM, Ribeiro RA, de Brum-Fernandes AJ, Farias MR, Rocha FAC, Ribeiro-do-Valle RM (2003) Nitric oxide and cyclooxygenase may participate in the analgesic and anti-inflammatory effect of the cucurbitacins fraction from Wilbrandia ebracteata. Life Sci 73(17):2185–2197PubMedCrossRefGoogle Scholar
  25. 25.
    Rodriguez-Ayerbe C, Smith-Zubiaga I (2000) Effect of serum withdrawal on the proliferation of B16F10 melanoma cells. Cell Biol Int 24(5):279–283PubMedCrossRefGoogle Scholar
  26. 26.
    Valente LMM (2004) Cucurbitacins and their main structural characteristics. Quim Nova 27(6):944–948Google Scholar
  27. 27.
    Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33:261–274PubMedCrossRefGoogle Scholar
  28. 28.
    Zhang Y, Wang Z, Liu DX, Pagano M, Ravid K (1998) Ubiquitin dependent degradation of cyclin B is accelerated in polyploid megakaryocytes. J Biol Chem 273:1387–1392PubMedCrossRefGoogle Scholar
  29. 29.
    Fernandez C, Lobo MdMdelV, Gomez-Coronado D, Lasuncion MA (2004) Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation. Exp Cell Res 300:109–120Google Scholar
  30. 30.
    Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425:859–864PubMedCrossRefGoogle Scholar
  31. 31.
    Yamashiro S, Yamakita Y, Hosoya H, Matsumura F (1991) Phosphorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature 349:169–172PubMedCrossRefGoogle Scholar
  32. 32.
    Fenton RG, Kung HF, Longo DL, Smith MR (1992) Regulation of intracellular actin polymerization by prenylated cellular proteins. J Cell Biol 117:347–356PubMedCrossRefGoogle Scholar
  33. 33.
    Huckaba TM, Pon LA (2002) Cytokinesis: rho and formins are the ringleaders. Curr Biol 12(23):R813–R814PubMedCrossRefGoogle Scholar
  34. 34.
    Giganti A, Friederich E (2003) The actin cytoskeleton as a therapeutic target: state of the art and future directions. Prog Cell Cycle Res 5:511–525PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jarbas Mota Siqueira
    • 1
  • Andressa Córneo Gazola
    • 2
  • Mareni Rocha Farias
    • 2
  • Lëonid Volkov
    • 3
  • Nathalie Rivard
    • 4
  • Artur José de Brum-Fernandes
    • 5
  • Rosa Maria Ribeiro-do-Valle
    • 1
    Email author
  1. 1.Department of Pharmacology, CCB, Bloco “D”Federal University of Santa CatarinaFlorianópolisBrazil
  2. 2.Department of Pharmaceutical SciencesFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Department of Immunology, Faculté de MedecineUniversité SherbrookeSherbrookeCanada
  4. 4.Department of Anatomy and Cell Biology, Faculté de MedecineUniversité SherbrookeSherbrookeCanada
  5. 5.Division of Rheumatology, Faculté de MedecineUniversité de SherbrookeSherbrookeCanada

Personalised recommendations