Cancer Chemotherapy and Pharmacology

, Volume 62, Issue 6, pp 1055–1064 | Cite as

Inducing apoptosis and enhancing chemosensitivity to Gemcitabine via RNA interference targeting Mcl-1 gene in pancreatic carcinoma cell

  • San-Hua Wei
  • Ke Dong
  • Fang Lin
  • Xi Wang
  • Bin Li
  • Jian-jun Shen
  • Qing Zhang
  • Rui Wang
  • Hui-Zhong ZhangEmail author
Original Article



Resistance to chemotherapy is a major cause of treatment failure and poor prognosis in pancreatic carcinoma. Myeloid cell leukemia-1 (Mcl-1) is highly up-regulated in pancreatic carcinoma and is associated with the anti-apoptosis and the resistance to chemotherapy drugs. Suppression of Mcl-1 would be an approach to induce apoptosis and enhance the chemosensitivity.


In this study, three pancreatic cancer cell lines (PANC-1, BxPC-3 and SW1900) stably expressing shRNAs targeting Mcl-1 gene were established and gene expression inhibition was assessed by Real-Time QPCR and Western blotting. The effects of Mcl-1 downregulation mediated by RNAi were explored in vitro and in vivo.


We showed that the specific downregulation of Mcl-1 strikingly inhibited cell growth, colony formation, cell cycle arrest and induced apoptosis in pancreatic cancer cells in vitro, and markedly decreased the tumorigenicity in a mouse xenograft model. Moreover, knockdown of Mcl-1 significantly increased the chemosensitivity to Gemcitabine in pancreatic carcinoma cells.


Our data suggests that the specific downregulation of Mcl-1 by RNAi is a promising approach to induce apoptosis and enhance the chemosensitivity for pancreatic carcinoma gene therapy.


Mcl-1 RNA interference Apoptosis Pancreatic carcinoma Chemotherapy 



The research was supported by a grant from the Natural Science Foundation of Shaanxi Province (2003K10G44). Thanks to every one of department of clinical laboratory for their sincere help and technical support.


  1. 1.
    Bardeesy N, DePinho RA (2002) Pancreatic cancer biology and genetics. Nat Rev Cancer 2(12):897–909PubMedCrossRefGoogle Scholar
  2. 2.
    Raraty MG, Magee CJ, Ghaneh P, Neoptolemos JP (2002) New techniques and agents in the adjuvant therapy of pancreatic cancer. Acta Oncol 41(7–8):582–595PubMedCrossRefGoogle Scholar
  3. 3.
    Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363(9414):1049–1057PubMedCrossRefGoogle Scholar
  4. 4.
    Evans DB, Abbruzzese JL, Rich TZ (1997) Cancer of the pancreas. In: DeVita VT, Hellman S, Rosenberg SA (eds) Cancer, principles and practice of oncology. 5th edn. J.B. Lippincott Co, Philadelphia, pp 1054–1087Google Scholar
  5. 5.
    Schniewind B, Christgen M, Kurdow R, Haye S, Kremer B, Kalthoff H, Ungefroren H (2004) Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer 109(2):182–188PubMedCrossRefGoogle Scholar
  6. 6.
    Naniwa J, Kigawa J, Kanamori Y, Itamochi H, Oishi T, Shimada M, Shimogai R, Kawaguchi W, Sato S, Terakawa N (2007) Genetic diagnosis for chemosensitivity with drug-resistance genes in epithelial ovarian cancer. Int J Gynecol Cancer 17(1):76–82PubMedCrossRefGoogle Scholar
  7. 7.
    Zelenin AV, Kaigrorodov VA, Prasdov VA (2000) Gene therapy today and tomorrow [J]. Mol Biol 32(2):188–196Google Scholar
  8. 8.
    Wasylyshyn MI, Neuman WL, Angriman I, Snyder LA, Montag AG, Westbrook CA, Michelassi F (1991) Evidence for a new tumor suppressor gene involved in gastrointestinal malignancies. Surgery 110(2):265–268PubMedGoogle Scholar
  9. 9.
    Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90(8):3516–3520PubMedCrossRefGoogle Scholar
  10. 10.
    Miyamoto Y, Hosotani R, Wada M, Lee JU, Koshiba T, Fujimoto K, Tsuji S, Nakajima S, Doi R, Kato M, Shimada Y, Imamura M (1999) Immunohistochemical analysis of Bcl-2, Bax, Bcl-X, and Mcl-1 expression in pancreatic cancers. Oncology 56(1):73–82PubMedCrossRefGoogle Scholar
  11. 11.
    Akgul C, Turner PC, White MR, Edwards SW (2000) Functional analysis of the human MCL-1 gene. Cell Mol Life Sci 57(4):684–691PubMedCrossRefGoogle Scholar
  12. 12.
    Schubert KM, Duronio V (2001) Distinct roles for extracellular-signalregulated protein kinase (ERK) mitogen-activated protein kinases and phosphatidylinositol 3-kinase in the regulation of Mcl-1 synthesis. Biochem J 356(Pt 2):473–480PubMedCrossRefGoogle Scholar
  13. 13.
    Craig RW (2002) MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16(4):444–454PubMedCrossRefGoogle Scholar
  14. 14.
    Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K, Reed JC (1995) Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146(6):1309–1319PubMedGoogle Scholar
  15. 15.
    Yang T, Kozopas KM, Craig RW (1995) The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J Cell Biol 128(6):1173–1184PubMedCrossRefGoogle Scholar
  16. 16.
    Thallinger C, Wolschek MF, Wacheck V, Maierhofer H, Günsberg P, Polterauer P, Pehamberger H, Monia BP, Selzer E, Wolff K, Jansen B (2003) Mcl-1 antisense therapy chemosensitizes human melanoma in a SCID mouse xenotransplantation model. J Invest Dermatol 120(6):1081–1086PubMedCrossRefGoogle Scholar
  17. 17.
    Lin X, Morgan-Lappe S, Huang X, Li L, Zakula DM, Vernetti LA, Fesik SW, Shen Y (2007) ‘Seed’ analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene 26(27):3972–3979PubMedCrossRefGoogle Scholar
  18. 18.
    Cavarretta IT, Neuwirt H, Untergasser G, Moser PL, Zaki MH, Steiner H, Rumpold H, Fuchs D, Hobisch A, Nemeth JA, Culig Z (2007) The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene 26(20):2822–2832PubMedCrossRefGoogle Scholar
  19. 19.
    Qin JZ, Xin H, Sitailo LA, Denning MF, Nickoloff BJ (2006) Enhanced killing of melanoma cells by simultaneously targeting Mcl-1 and NOXA. Cancer Res 66(19):9636–9645PubMedCrossRefGoogle Scholar
  20. 20.
    Hussain SR, Cheney CM, Johnson AJ, Lin TS, Grever MR, Caligiuri MA, Lucas DM, Byrd JC (2007) Mcl-1 is a relevant therapeutic target in acute and chronic lymphoid malignancies: down-regulation enhances rituximab-mediated apoptosis and complement-dependent cytotoxicity. Clin Cancer Res 13(7):2144–2150PubMedCrossRefGoogle Scholar
  21. 21.
    Tahir SK, Yang X, Anderson MG, Morgan-Lappe SE, Sarthy AV, Chen J, Warner RB, Ng SC, Fesik SW, Elmore SW, Rosenberg SH, Tse C (2007) Influence of Bcl-2 family members on the cellular response of small-cell lung cancer cell lines to ABT-737. Cancer Res 67(3):1176–1183PubMedCrossRefGoogle Scholar
  22. 22.
    Schulze-Bergkamen H, Fleischer B, Schuchmann M, Weber A, Weinmann A, Krammer PH, Galle PR (2006) Suppression of Mcl-1 via RNA interference sensitizes human hepatocellular carcinoma cells towards apoptosis induction. BMC Cancer 6:232PubMedCrossRefGoogle Scholar
  23. 23.
    Karagiannis TC, El-Osta A (2004) siRNAs: mechanism of RNA interference, in vivo and potential clinical applications. Cancer Biol Ther 3(11):1069–1074PubMedGoogle Scholar
  24. 24.
    Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498PubMedCrossRefGoogle Scholar
  25. 25.
    Burcin MM, OMalley BW, Tsai SY (1998) A regulatory systemfor target gene expression. Front Biosci 3:c1–c7PubMedGoogle Scholar
  26. 26.
    Miyagishi M, Taira K (2002) U6 promoter-driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nat Biotechnol 20(5):497–500PubMedCrossRefGoogle Scholar
  27. 27.
    Paul CP, Good PD, Winer I, Engelke DR (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20(5):505–508PubMedCrossRefGoogle Scholar
  28. 28.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519PubMedCrossRefGoogle Scholar
  29. 29.
    Schulze-Bergkamen H, Krammer PH (2004) Apoptosis in cancer-implications for therapy. Semin Oncol 31(1):90–119PubMedCrossRefGoogle Scholar
  30. 30.
    Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90(8):3516–3520PubMedCrossRefGoogle Scholar
  31. 31.
    Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL, Bataille R, Amiot M (2002) Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x (L) is an essential survival protein of human myeloma cells. Blood 100(1):194–199PubMedCrossRefGoogle Scholar
  32. 32.
    Song L, Coppola D, Livingston S, Cress D, Haura EB (2005) Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 4(3):267–276PubMedCrossRefGoogle Scholar
  33. 33.
    Pohl J, Zuna I, Stremmel W, Rudi J (2001) Systemic chemotherapy with epirubicin for treatment of advanced or multifocal hepatocellular carcinoma. Chemotherapy 47(5):359–365PubMedCrossRefGoogle Scholar
  34. 34.
    Burris HA III, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P, Nelson R, Dorr FA, Stephens CD, Von Hott DD (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol 15(6):2403–2413PubMedGoogle Scholar
  35. 35.
    Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuelke C, Burkhart C et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. J Am Med Assoc 297(3):267–277CrossRefGoogle Scholar
  36. 36.
    Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2V, 2V-difluoro-deoxycytidine on DNA synthesis. Cancer Res 51(22):6110–6117PubMedGoogle Scholar
  37. 37.
    Schniewind B, Christgen M, Kurdow R, Haye S, Kremer B, Kalthoff H, Ungefroren H (2004) Resistance of pancreatic cancer to gemcitabine treatment is dependent on mitochondria-mediated apoptosis. Int J Cancer 109(2):182–188PubMedCrossRefGoogle Scholar
  38. 38.
    Yang C, Kaushal V, Shah SV, Kaushal GP (2007) Mcl-1 is downregulated in cisplatin-induced apoptosis, and proteasome inhibitors restore Mcl-1 and promote survival in renal tubular epithelial cells. Am-J-Physiol-Renal-Physiol 292(6):1710–1717CrossRefGoogle Scholar
  39. 39.
    Cascallo M, Calbo J, Capella G, Fillat C, Pastor-Anglada M, Mazo A (2005) Enhancement of gemcitabine-induced apoptosis by restoration of p53 function in human pancreatic tumors. Oncology 68(2–3):179–189PubMedGoogle Scholar
  40. 40.
    Koizumi K, Tanno S, Nakano Y, Habiro A, Izawa T, Mizukami Y, Okumura T, Kogho Y (2005) Activation of p38 mitogen—activated protein kinase in necessary for gemcitabine-induced cytotoxicity in human pancreatic cancer cells. Anticancer Res 25(2):3347–3353PubMedGoogle Scholar
  41. 41.
    Bold RJ, Chandra J, McConkey DJ (1999) Gemcitabine induced programmed cell death (apoptosis) of human pancreatic carcinoma is determined by Bcl-2 content. Ann Surg Oncol 6(3):279–285PubMedCrossRefGoogle Scholar
  42. 42.
    Nichole Boyer Arnold, Nohea Arkus, Jason Gunn, Murray Korc (2007) The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces growth inhibition and enhances gemcitabine-induced cell death in pancreatic cancer. Clin Cancer Res 13(1):18–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • San-Hua Wei
    • 1
  • Ke Dong
    • 2
  • Fang Lin
    • 1
  • Xi Wang
    • 1
  • Bin Li
    • 2
  • Jian-jun Shen
    • 2
  • Qing Zhang
    • 2
  • Rui Wang
    • 1
  • Hui-Zhong Zhang
    • 1
    • 2
    Email author
  1. 1.Research Center, Tangdu HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Department of Clinical Diagnosis, Tangdu HospitalFourth Military Medical UniversityXi’anChina

Personalised recommendations