Cancer Chemotherapy and Pharmacology

, Volume 62, Issue 5, pp 769–778 | Cite as

An in vitro and in vivo study of the combination of the heat shock protein inhibitor 17-allylamino-17-demethoxygeldanamycin and carboplatin in human ovarian cancer models

  • Udai Banerji
  • Nivedita Sain
  • Swee Y. Sharp
  • Melanie Valenti
  • Yasmin Asad
  • Ruth Ruddle
  • Florence Raynaud
  • Michael Walton
  • Suzanne A. Eccles
  • Ian Judson
  • Ann L. Jackman
  • Paul Workman
Original Article



To study the interactions of the heat shock protein 90 (HSP90) inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) and carboplatin in vitro and in vivo.

Experimental design

The combination of 17-AAG and carboplatin on the growth inhibition of A2780, SKOV-3, IGROV-1 and HX62 human ovarian cancer cells was studied in vitro by MTT assays. The effect of the sequence of administration of both drugs was further investigated in A2780 cells by sulforhodamine B assays. The ability of 17-AAG to deplete HSP90 client proteins either alone or in combination with carboplatin was evaluated by western blotting. Tumor concentrations of 17-AAG and carboplatin alone or in combination in vivo were determined by validated liquid chromatography with ultraviolet detection and atomic absorption spectroscopy methods. The growth inhibitory effects of 17-AAG, carboplatin and the combination were studied in the A2780 xenograft model.


The combination index (CI) at fu0.5 for 17-AAG plus carboplatin was 0.97 (±0.12 SD) when A2780 cells were exposed to carboplatin followed by 17-AAG indicating additivity. The addition of carboplatin did not alter the ability of 17-AAG to cause C-RAF, CDK4 and p-AKT depletion or HSP70 induction. Tumor 17-AAG and carboplatin concentrations were not significantly different in the single agent and combination arms. Tumor weights relative to controls on day 6 (T/C) were 67% for the carboplatin, 64% for the 17-AAG and 22% for the combination.


In the specified sequences of drug exposure, 17-AAG and carboplatin have additive growth inhibitory effects in vitro and beneficial effects were seen with the combination in vivo. These findings form the basis for the possible evaluation of 17-AAG and carboplatin in a clinical trial.


HSP90 17-AAG Carboplatin Combination studies Ovarian cancer 



This work was supported by the Cancer Research UK [CUK] program grant numbers C309/A2187, C1178/A2647 and C1178/A2648. Paul Workman is a Cancer Research UK Life Fellow. We thank Dr. Mike Ormerod, Section of Medicine, The Institute of Cancer Research, Sutton, UK, for advice on median effect analysis.


  1. 1.
    Agarwal R, Kaye SB (2003) Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3:502–516PubMedCrossRefGoogle Scholar
  2. 2.
    Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23:4152–4161PubMedCrossRefGoogle Scholar
  3. 3.
    Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P (2005) Pharmacokinetic–pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allylamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft models. Clin Cancer Res 11:7023–7032PubMedCrossRefGoogle Scholar
  4. 4.
    Baselga J, Albanell J, Molina MA, Arribas J (2001) Mechanism of action of trastuzumab and scientific update. Semin Oncol 28:4–11PubMedCrossRefGoogle Scholar
  5. 5.
    Benepal T, Jackman A, Pyle L, Bate S, Hardcastle A, Aherne W, Mitchell F, Simmons L, Ruddle R, Raynaud F, Gore M (2005) A phase I pharmacokinetic and pharmacodynamic study of BGC9331 and carboplatin in relapsed gynaecological malignancies. Br J Cancer 93:868–875PubMedCrossRefGoogle Scholar
  6. 6.
    Chiosis G, Vilenchik M, Kim J, Solit D (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9:881–888PubMedCrossRefGoogle Scholar
  7. 7.
    Chou TC, Talalay P (1984) Quantitative analysis of dose–effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55PubMedCrossRefGoogle Scholar
  8. 8.
    Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345PubMedCrossRefGoogle Scholar
  9. 9.
    Curt GA, Grygiel JJ, Corden BJ, Ozols RF, Weiss RB, Tell DT, Myers CE, Collins JM (1983) A phase I and pharmacokinetic study of diamminecyclobutane-dicarboxylatoplatinum (NSC 241240). Cancer Res 43:4470–4473PubMedGoogle Scholar
  10. 10.
    da Rocha Dias S, Friedlos F, Light Y, Springer C, Workman P, Marais R (2005) Activated B-RAF is an Hsp90 client protein that is targeted by the anticancer drug 17-allylamino-17-demethoxygeldanamycin. Cancer Res 65:10686–10691PubMedCrossRefGoogle Scholar
  11. 11.
    du Bois A, Luck HJ, Meier W, Adams HP, Mobus V, Costa S, Bauknecht T, Richter B, Warm M, Schroder W, Olbricht S, Nitz U, Jackisch C, Emons G, Wagner U, Kuhn W, Pfisterer J (2003) A randomized clinical trial of cisplatin/paclitaxel versus carboplatin/paclitaxel as first-line treatment of ovarian cancer. J Natl Cancer Inst 95:1320–1329PubMedGoogle Scholar
  12. 12.
    Eccles SA, Court WJ, Box GA, Dean CJ, Melton RG, Springer CJ (1994) Regression of established breast carcinoma xenografts with antibody-directed enzyme prodrug therapy against c-erbB2 p185. Cancer Res 54:5171–5177PubMedGoogle Scholar
  13. 13.
    Enmon R, Yang WH, Ballangrud AM, Solit DB, Heller G, Rosen N, Scher HI, Sgouros G (2003) Combination treatment with 17-N-allylamino-17-demethoxy geldanamycin and acute irradiation produces supra-additive growth suppression in human prostate carcinoma spheroids. Cancer Res 63:8393–8399PubMedGoogle Scholar
  14. 14.
    Fang Y, Fliss AE, Robins DM, Caplan AJ (1996) Hsp90 regulates androgen receptor hormone binding affinity in vivo. J Biol Chem 271:28697–28702PubMedCrossRefGoogle Scholar
  15. 15.
    Fliss AE, Benzeno S, Rao J, Caplan AJ (2000) Control of estrogen receptor ligand binding by Hsp90. J Steroid Biochem Mol Biol 72:223–230PubMedCrossRefGoogle Scholar
  16. 16.
    Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE (2001) Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem 276:15571–15574PubMedCrossRefGoogle Scholar
  17. 17.
    Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH (2004) Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 1. J Clin Oncol 22:777–784PubMedCrossRefGoogle Scholar
  18. 18.
    Goetz MP, Toft D, Reid J, Ames M, Stensgard B, Safgren S, Adjei AA, Sloan J, Atherton P, Vasile V, Salazaar S, Adjei A, Croghan G, Erlichman C (2005) Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J Clin Oncol 23:1078–1087PubMedCrossRefGoogle Scholar
  19. 19.
    Grbovic OM, Basso AD, Sawai A, Ye Q, Friedlander P, Solit D, Rosen N (2006) V600E B-Raf requires the Hsp90 chaperone for stability and is degraded in response to Hsp90 inhibitors. Proc Natl Acad Sci USA 103:57–62PubMedCrossRefGoogle Scholar
  20. 20.
    Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO (1997) The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843–23850PubMedCrossRefGoogle Scholar
  21. 21.
    Haluska P, Toft D, Steinmetz S, Furth A, Mandrekar A, Stensgard B, McCollum A, Hanson L, Adjei A, Erlichman C (2004) A phase I trial of gemcitabine (Gem), 17-allylaminogeldanamcyin (17-AAG) and cisplatin (CDDP) in solid tumor patients. Proc Am Assoc Clin Oncol 23:209Google Scholar
  22. 22.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  23. 23.
    Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH (2004) Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—INTACT 2. J Clin Oncol 22:785–794PubMedCrossRefGoogle Scholar
  24. 24.
    Ho CL, Kurman RJ, Dehari R, Wang TL, Shih Ie M (2004) Mutations of BRAF and KRAS precede the development of ovarian serous borderline tumors. Cancer Res 64:6915–6918PubMedCrossRefGoogle Scholar
  25. 25.
    Hongo A, Seki S, Akiyama K, Kudo T (1994) A comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatin. Int J Biochem 26:1009–1016PubMedCrossRefGoogle Scholar
  26. 26.
    Hostein I, Robertson D, DiStefano F, Workman P, Clarke PA (2001) Inhibition of signal transduction by the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin results in cytostasis and apoptosis. Cancer Res 61:4003–4009PubMedGoogle Scholar
  27. 27.
    Isaacs JS, Xu W, Neckers L (2003) Heat shock protein 90 as a molecular target for cancer therapeutics. Cancer Cell 3:213–217PubMedCrossRefGoogle Scholar
  28. 28.
    Jackman A, Kaye SB, Workman P (2004) The combination of cytotoxic and molecularly targeted therapies: can it be done? Drug Discov Today Ther Strateg 4:445–454CrossRefGoogle Scholar
  29. 29.
    Johnston SR (2004) Ovarian cancer: review of the National Institute for Clinical Excellence (NICE) guidance recommendations. Cancer Invest 22:730–742PubMedCrossRefGoogle Scholar
  30. 30.
    Koeller JM, Trump DL, Tutsch KD, Earhart RH, Davis TE, Tormey DC (1986) Phase I clinical trial and pharmacokinetics of carboplatin (NSC 241240) by single monthly 30-minute infusion. Cancer 57:222–225PubMedCrossRefGoogle Scholar
  31. 31.
    Maloney A, Workman P (2002) HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24PubMedCrossRefGoogle Scholar
  32. 32.
    Marcu M, Neckers L (2003) The C-terminal half of heat shock protein 90 represents a second site for pharmacologic intervention in chaperone function. Curr Cancer Drug Targets 3:343–347PubMedCrossRefGoogle Scholar
  33. 33.
    McPhillips F, Mullen P, MacLeod KG, Sewell JM, Monia BP, Cameron DA, Smyth JF, Langdon SP (2006) Raf-1 is the predominant Raf isoform that mediates growth factor-stimulated growth in ovarian cancer cells. Carcinogenesis 27:729–739PubMedCrossRefGoogle Scholar
  34. 34.
    Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460:251–256PubMedCrossRefGoogle Scholar
  35. 35.
    Munster PN, Basso A, Solit D, Norton L, Rosen N (2001) Modulation of Hsp90 function by ansamycins sensitizes breast cancer cells to chemotherapy-induced apoptosis in an RB- and schedule-dependent manner. Clin Cancer Res 7:2228–2236PubMedGoogle Scholar
  36. 36.
    Nimmanapalli R, O’Bryan E, Bhalla K (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res 61:1799–1804PubMedGoogle Scholar
  37. 37.
    Pacey S, Banerji U, Judson I, Workman P (2006) Hsp90 inhibitors in the clinic. Handb Exp Pharmacol 172:331–335PubMedCrossRefGoogle Scholar
  38. 38.
    Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2:533–543PubMedCrossRefGoogle Scholar
  39. 39.
    Persons DL, Yazlovitskaya EM, Cui W, Pelling JC (1999) Cisplatin-induced activation of mitogen-activated protein kinases in ovarian carcinoma cells: inhibition of extracellular signal-regulated kinase activity increases sensitivity to cisplatin. Clin Cancer Res 5:1007–1014PubMedGoogle Scholar
  40. 40.
    Prodromou C, Roe SM, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75PubMedCrossRefGoogle Scholar
  41. 41.
    Radujkovic A, Schad M, Topaly J, Veldwijk MR, Laufs S, Schultheis BS, Jauch A, Melo JV, Fruehauf S, Zeller WJ (2005) Synergistic activity of imatinib and 17-AAG in imatinib-resistant CML cells overexpressing BCR-ABL: inhibition of P-glycoprotein function by 17-AAG. Leukemia 19:1198–1206PubMedCrossRefGoogle Scholar
  42. 42.
    Rakitina TV, Vasilevskaya IA, O’Dwyer PJ (2003) Additive interaction of oxaliplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines results from inhibition of nuclear factor kappaB signaling. Cancer Res 63:8600–8605PubMedGoogle Scholar
  43. 43.
    Ramanathan RK, Trump DL, Eiseman JL, Belani CP, Agarwala SS, Zuhowski EG, Lan J, Potter DM, Ivy SP, Ramalingam S, Brufsky AM, Wong MK, Tutchko S, Egorin MJ (2005) Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin Cancer Res 11:3385–3391PubMedCrossRefGoogle Scholar
  44. 44.
    Sain N, Krishnan B, Ormerod MG, De Rienzo A, Liu WM, Kaye SB, Workman P, Jackman AL (2006) Potentiation of paclitaxel activity by the HSP90 inhibitor 17-allylamino-17-demethoxygeldanamycin in human ovarian carcinoma cell lines with high levels of activated AKT. Mol Cancer Ther 5:1197–1208PubMedCrossRefGoogle Scholar
  45. 45.
    Sanderson S, Valenti M, Gowan S, Patterson L, Ahmad Z, Workman P, Eccles SA (2006) Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis. Mol Cancer Ther 5:522–532PubMedCrossRefGoogle Scholar
  46. 46.
    Sato S, Fujita N, Tsuruo T (2000) Modulation of Akt kinase activity by binding to Hsp90. Proc Natl Acad Sci USA 97:10832–10837PubMedCrossRefGoogle Scholar
  47. 47.
    Sausville E (2001) Combining cytotoxics and 17-allylamino, 17-demethoxygeldanamycin: sequence and tumor biology matters. Clin Cancer Res 7:2155–2158PubMedGoogle Scholar
  48. 48.
    Schulte TW, An WG, Neckers LM (1997) Geldanamycin-induced destabilization of Raf-1 involves the proteasome. Biochem Biophys Res Commun 239:655–659PubMedCrossRefGoogle Scholar
  49. 49.
    Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM (1996) Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839–5845PubMedGoogle Scholar
  50. 50.
    Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C, Pinkel D, Powell B, Mills GB, Gray JW (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102PubMedCrossRefGoogle Scholar
  51. 51.
    Solit D, Egorin MJ, G. V, Delacruz A, Ye Q, Schwartz L, Larson S, Rosen N, Scher HI (2004) Phase 1 pharmacokinetic and pharmacodynamic trial of docetaxel and 17AAG (17-allylamino-17-demethoxygeldanamycin). Proc Am Assoc Clin Oncol 23:203Google Scholar
  52. 52.
    Sorenson CM, Eastman A (1988) Mechanism of cis-diamminedichloroplatinum(II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks. Cancer Res 48:4484–4488PubMedGoogle Scholar
  53. 53.
    Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP (1997) Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239–250PubMedCrossRefGoogle Scholar
  54. 54.
    Stepanova L, Leng X, Parker SB, Harper JW (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10:1491–1502PubMedCrossRefGoogle Scholar
  55. 55.
    Sui L, Dong Y, Ohno M, Goto M, Inohara T, Sugimoto K, Tai Y, Hando T, Tokuda M (2000) Inverse expression of Cdk4 and p16 in epithelial ovarian tumors. Gynecol Oncol 79:230–237PubMedCrossRefGoogle Scholar
  56. 56.
    Vasilevskaya I, Rakitina T, O’Dwyer M (2002) Geldanamycin and its 17-allyamino derivative antagonize the action of cisplatin in human colon cancer cell lines. Proc Am Assoc Cancer Res 43:332Google Scholar
  57. 57.
    Vasilevskaya IA, Rakitina TV, O’Dwyer PJ (2003) Geldanamycin and its 17-allylamino-17-demethoxy analogue antagonize the action of Cisplatin in human colon adenocarcinoma cells: differential caspase activation as a basis for interaction. Cancer Res 63:3241–3246PubMedGoogle Scholar
  58. 58.
    Vasilevskaya IA, Rakitina TV, O’Dwyer PJ (2004) Quantitative effects on c-Jun N-terminal protein kinase signaling determine synergistic interaction of cisplatin and 17-allylamino-17-demethoxygeldanamycin in colon cancer cell lines. Mol Pharmacol 65:235–243PubMedCrossRefGoogle Scholar
  59. 59.
    Webb CP, Hose CD, Koochekpour S, Jeffers M, Oskarsson M, Sausville E, Monks A, Vande Woude GF (2000) The geldanamycins are potent inhibitors of the hepatocyte growth factor/scatter factor-met-urokinase plasminogen activator-plasmin proteolytic network. Cancer Res 60:342–349PubMedGoogle Scholar
  60. 60.
    Welch WJ, Feramisco JR (1982) Purification of the major mammalian heat shock proteins. J Biol Chem 257:14949–14959PubMedGoogle Scholar
  61. 61.
    Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefGoogle Scholar
  62. 62.
    Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM (1994) Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci USA 91:8324–8328PubMedCrossRefGoogle Scholar
  63. 63.
    Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH (1998) The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol 18:1517–1524PubMedGoogle Scholar
  64. 64.
    Workman P (2004) Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149–157PubMedCrossRefGoogle Scholar
  65. 65.
    Workman P, Twentyman P, Balkwill F, Balmain A, Chaplin D, Double J (1998) United Kingdom Co-ordinating Comittee on Cancer Research guidelines for the welfare of animals in experimental neoplasia. Br J Cancer 77:1–10Google Scholar
  66. 66.
    Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276:3702–3708PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Udai Banerji
    • 1
  • Nivedita Sain
    • 2
  • Swee Y. Sharp
    • 1
  • Melanie Valenti
    • 1
  • Yasmin Asad
    • 1
  • Ruth Ruddle
    • 1
  • Florence Raynaud
    • 1
  • Michael Walton
    • 1
  • Suzanne A. Eccles
    • 1
  • Ian Judson
    • 1
  • Ann L. Jackman
    • 2
  • Paul Workman
    • 1
  1. 1.Cancer Research UK Centre for Cancer Therapeutics, Haddow LaboratoriesThe Institute of Cancer ResearchSuttonUK
  2. 2.Section of Medicine, Haddow LaboratoriesThe Institute of Cancer ResearchSuttonUK

Personalised recommendations