Cancer Chemotherapy and Pharmacology

, Volume 61, Issue 3, pp 459–469 | Cite as

Oligo-microarray analysis reveals the role of cyclophilin A in drug resistance

  • Shuai Chen
  • Mingjun Zhang
  • Honghui Ma
  • Hexige Saiyin
  • Suqin Shen
  • Jiajie Xi
  • Bo Wan
  • Long Yu
Original Article


Cyclophilin A (CYPA) belongs to peptidyl prolyl isomerases (PPIases), which catalyze the cis/trans isomerization of prolyl peptide bonds in cellular communication. CYPA has been implicated in several pathological processes, including cancer, inflammatory diseases, and HIV-1 infection. Up-regulation of CYPA has been found to be a common phenomenon in several tumor types, including in hepatocellular carcinoma (HCC). However, the role of CYPA in tumor cells remains unknown. We generated a stable SK-Hep1 cell line and studied the CYPA regulated genes at the transcriptome level. The microarray results reveal that CYPA can up-regulate the expression of many cytokine and drug resistance related genes. Furthermore, we showed that the elevated CYPA expression contributes to drug resistance. We postulate that the over-expression of CYPA in tumors may play a role in clinical resistance to chemotherapy.


Oligo-microarray Peptidyl–prolyl isomerase (PPIase) Cyclophilin A (CYPA/PPIA) Hepatocellular carcinoma (HCC) Multi-drug resistant protien (MRP) 



This work was supported by the Graduate Innovation Foundation of Fudan University (No. EYH1322021).

Supplementary material

280_2007_491_MOESM1_ESM.doc (107 kb)
The specificity of rabbit multiclonal antibody of CypA was evaluated by western blot. As shown in the figure, the specificity is high and no other band detected (DOC 107 kb)
280_2007_491_MOESM2_ESM.xls (573 kb)
ESM2 (XLS 573 kb)


  1. 1.
    Galat A, Metcalfe SM (1995) Peptidylproline cis/trans isomerases. Prog Biophys Mol Biol 63:67–118PubMedCrossRefGoogle Scholar
  2. 2.
    Gothel SF, Marahiel MA (1999) Peptidyl–prolyl cistrans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci 55:423–436PubMedCrossRefGoogle Scholar
  3. 3.
    Handschumacher RE, Harding MW, Rice J, Drugge RJ, Speicher DW (1984) Cyclophilin: a specific cytosolic binding protein for cyclosporin A. Science 226:544–547PubMedCrossRefGoogle Scholar
  4. 4.
    Harding MW, Galat A, Uehling DE, Schreiber SL (1989) A receptor for the immunosuppressant FK506 is a cistrans peptidyl–prolyl isomerase. Nature 341:758–760PubMedCrossRefGoogle Scholar
  5. 5.
    Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH (1989) A cytosolic binding protein for the immunosuppressant FK506 has peptidyl–prolyl isomerase activity but is distinct from cyclophilin. Nature 341:755–757PubMedCrossRefGoogle Scholar
  6. 6.
    Liu J, Jr Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL (1991) Calcineurin is a common target of cyclophilin–cyclosporin A and FKBP-FK506 complexes. Cell 66:807–815PubMedCrossRefGoogle Scholar
  7. 7.
    Campa MJ, Wang MZ, Howard B, Fitzgerald MC, Jr Patz EF (2003) Protein expression profiling identifies macrophage migration inhibitory factor and cyclophilin a as potential molecular targets in non-small cell lung cancer. Cancer Res 63:1652–1656PubMedGoogle Scholar
  8. 8.
    Li M, Zhai Q, Bharadwaj U, Wang H, Li F, Fisher WE, Chen C, Yao Q (2006) Cyclophilin A is overexpressed in human pancreatic cancer cells and stimulates cell proliferation through CD147. Cancer 106:2284–2294PubMedCrossRefGoogle Scholar
  9. 9.
    Arora K, Gwinn WM, Bower MA, Watson A, Okwumabua I, MacDonald HR, Bukrinsky MI, Constant SL (2005) Extracellular cyclophilins contribute to the regulation of inflammatory responses. J Immunol 175:517–522PubMedGoogle Scholar
  10. 10.
    Kim H, Kim WJ, Jeon ST, Koh EM, Cha HS, Ahn KS, Lee WH (2005) Cyclophilin A may contribute to the inflammatory processes in rheumatoid arthritis through induction of matrix degrading enzymes and inflammatory cytokines from macrophages. Clin Immunol 116:217–224PubMedCrossRefGoogle Scholar
  11. 11.
    Franke EK, Yuan HE, Luban J (1994) Specific incorporation of cyclophilin A into HIV-1 virions. Nature 372:359–362PubMedCrossRefGoogle Scholar
  12. 12.
    Thali M, Bukovsky A, Kondo E, Rosenwirth B, Walsh CT, Sodroski J, Gottlinger HG (1994) Functional association of cyclophilin A with HIV-1 virions. Nature 372:363–365PubMedCrossRefGoogle Scholar
  13. 13.
    Towers G, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9:1138–1143PubMedCrossRefGoogle Scholar
  14. 14.
    Chen S, Zhu B, Yu L (2006) In silico comparison of gene expression levels in ten human tumor types reveals candidate genes associated with carcinogenesis. Cytogenet Genome Res 112:53–59PubMedCrossRefGoogle Scholar
  15. 15.
    Howard BA, Furumai R, Campa MJ, Rabbani ZN, Vujaskovic Z, Wang XF, Jr Patz EF (2005) Stable RNA interference-mediated suppression of cyclophilin A diminishes non-small-cell lung tumor growth in vivo. Cancer Res 65:8853–8860PubMedCrossRefGoogle Scholar
  16. 16.
    Moore JP, Stevenson M (2000) New targets for inhibitors of HIV-1 replication. Nat Rev Mol Cell Biol 1:40–49PubMedCrossRefGoogle Scholar
  17. 17.
    Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YI, Sohn TS, Noh JH, Jung G (2002) Proteome analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 291:1031–1037PubMedCrossRefGoogle Scholar
  18. 18.
    Chen S, Guo JH, Saiyin H, Chen L, Zhou GJ, Huang CQ, Yu L (2004) Cloning and characterization of human CAGLP gene encoding a novel EF-hand protein. DNA Seq 15:365–368PubMedGoogle Scholar
  19. 19.
    Watashi K, Ishii N, Hijikata M, Inoue D, Murata T, Miyanari Y, Shimotohno K (2005) Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 19:111–122PubMedCrossRefGoogle Scholar
  20. 20.
    Inokuchi A, Hinoshita E, Iwamoto Y, Kohno K, Kuwano M, Uchiumi T (2001) Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. J Biol Chem 276:46822–46829PubMedCrossRefGoogle Scholar
  21. 21.
    Elizabeth HB, Chen ZS, Shchaveleva I, Belinsky MG, Kruh GD (2004) Analysis of drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 64:4927–4930CrossRefGoogle Scholar
  22. 22.
    Ganapathi R, Grabowski D (1988) Differential effect of the calmodulin inhibitor trifluoperazine in modulating cellular accumulation, retention and cytotoxicity of doxorubicin in progressively doxorubicin-resistant L1210 mouse leukemia cells. Biochem Pharmacol 37:185–193PubMedCrossRefGoogle Scholar
  23. 23.
    Duan Z, Lamendola DE, Penson RT, Kronish KM, Seiden MV (2002) Overexpression of IL-6 but not IL-8 increase paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine 17:234–242PubMedCrossRefGoogle Scholar
  24. 24.
    Gerk PM, Vore M (2002) Regulation of expression of the multidrug resistance-associated protein 2 (MRP2) and its role in drug disposition. J Pharmacol Exp Ther 302:407–415PubMedCrossRefGoogle Scholar
  25. 25.
    Zeng H, Liu G, Rea PA, Kruh GD (2000) Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res 60:4779–4784PubMedGoogle Scholar
  26. 26.
    To-Figueras J, Gene M, Gomez-Catalan J, Pique E, Borrego N, Caballero M, Cruellas F, Raya A, Dicenta M, Corbella J (2002) Microsomal epoxide hydrolase and glutathione S-transferase polymorphisms in relation to laryngeal carcinoma risk. Cancer Lett 187:95–101PubMedCrossRefGoogle Scholar
  27. 27.
    Blackburn AC, Coggan M, Tzeng HF, Lantum H, Polekhina G, Parker MW, Anders MW, Board PG (2001) GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. Pharmacogenetics 11:671–678PubMedCrossRefGoogle Scholar
  28. 28.
    Zydowsky LD, Etzkorn FA, Chang HY, Ferguson SB, Stolz LA, Ho SI, Walsh CT (1992) Active site mutants of human cyclophilin A separate peptidyl–prolyl isomerase activity from cyclosporin A binding and calcineurin inhibition. Protein Sci 1:1092–1099PubMedCrossRefGoogle Scholar
  29. 29.
    Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351PubMedCrossRefGoogle Scholar
  30. 30.
    Legrain P, Wojcik J, Gauthier JM (2001) Protein–protein interaction maps: a lead towards cellular functions. Trends Genet 17:346–352PubMedCrossRefGoogle Scholar
  31. 31.
    Blagoev B, Pandey A (2001) Microarrays go live-new prospects for proteomics. Trends Biochem Sci 26:639–641PubMedCrossRefGoogle Scholar
  32. 32.
    Fields S, Song O (1989) A novel genetic system to detect protein–protein interactions. Nature 340:245–246PubMedCrossRefGoogle Scholar
  33. 33.
    Elbashir SM et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498PubMedCrossRefGoogle Scholar
  34. 34.
    Deeg MJ, Strob R, Thomas ED, Flournoy N, Kennedy MS, Banaji M, Appelbaum FR, Bensinger WI, Bucker CD, Clift RA, Doney K, Fefer A, McGuffin R, Sanders JE, Singer J, Stewart P, Sullivan KM, Witherspoon RP (1985) Cyclosporine as prophylaxis for graft-versus-host disease: a randomized study in patients undergoing marrow transplantation for acute nonlymphoblastic leukemia. Blood 65:1325–1334PubMedGoogle Scholar
  35. 35.
    Leier I, Jedlitschky G, Buchholz U, Cole SP, Deeley RG, Keppler D (1994) The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 269:27807–27810PubMedGoogle Scholar
  36. 36.
    Brooks T, Minderman H, O’Loughlin KL et al (2003) Taxane-based reversal agents modulate drug resistance mediated by P-glycoprotein, multidrug resistance protein, and breast cancer resistance protein. Mol Cancer Ther 2:1195–1205PubMedGoogle Scholar
  37. 37.
    Matsuda S, Koyasu S (2003) Regulation of MAPK signaling pathways through immunophilin–ligand complex. Curr Top Med Chem 3:1358–1367PubMedCrossRefGoogle Scholar
  38. 38.
    Lin HL, Lui WY, Liu TY, Chi CW (2003) Reversal of Taxol resistance in hepatoma by cyclosporin A: involvement of the PI-3 kinase-AKT 1 pathway. Br J Cancer 88:973–980PubMedCrossRefGoogle Scholar
  39. 39.
    Nakahara C, Nakamura K, Yamanaka N, Baba E, Wada M, Matsunaga H, Noshiro H, Tanaka M, Morisaki T, Katano M (2003) Cyclosporin-A enhances docetaxel-induced apoptosis through inhibition of nuclear factor-kappaB activation in human gastric carcinoma cells. Clin Cancer Res 9:5409–5416PubMedGoogle Scholar
  40. 40.
    Fojo T, Bates S (2003) Strategies for reversing drug resistance. Oncogene 22:7512–7523PubMedCrossRefGoogle Scholar
  41. 41.
    Seko Y, Fujimura T, Taka H, Mineki R, Murayama K, Nagai R (2004) Hypoxia followed by reoxygenation induces secretion of cyclophilin A from cultured rat cardiac myocytes. Biochem Biophys Res Commun 317:162–168PubMedCrossRefGoogle Scholar
  42. 42.
    Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, Lambeth JD, Berk BC (2000) Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res 87:789–796PubMedGoogle Scholar
  43. 43.
    Cui Y, Mirkia K, Florence Fu YH, Zhu L, Yokoyama KK, Chiu R (2002) Interaction of the retinoblastoma gene product, RB, with cyclophilin A negatively affects cyclosporin-inhibited NFAT signaling. J Cell Biochem 86:630–641PubMedCrossRefGoogle Scholar
  44. 44.
    Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (2004) A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 6:97–105PubMedCrossRefGoogle Scholar
  45. 45.
    Brazin KN, Mallis RJ, Fulton DB, Andreotti AH (2002) Regulation of the tyrosine kinase Itk by the peptidyl–prolyl isomerase cyclophilin A. Proc Natl Acad Sci USA 99:1899–1904PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Shuai Chen
    • 1
  • Mingjun Zhang
    • 1
  • Honghui Ma
    • 1
  • Hexige Saiyin
    • 1
  • Suqin Shen
    • 1
  • Jiajie Xi
    • 1
  • Bo Wan
    • 1
  • Long Yu
    • 1
  1. 1.State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life SciencesFudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations