Cancer Chemotherapy and Pharmacology

, Volume 61, Issue 2, pp 291–299 | Cite as

Pharmacodynamic characterization of gemcitabine cytotoxicity in an in vitro cell culture bioreactor system

  • Mark N. Kirstein
  • Richard C. Brundage
  • Megan M. Moore
  • Brent W. Williams
  • Lisa A. Hillman
  • Jason W. Dagit
  • James E. Fisher
  • Paul H. Marker
  • Robert A. Kratzke
  • Douglas Yee
Original Article

Abstract

Purpose

Gemcitabine, a pyrimidine nucleoside, is approved for the treatment of non-small cell lung cancer, pancreatic carcinoma, and breast cancer. Chemotherapy regimens are determined experimentally with static tissue culture systems, animal models, and in Phase I clinical trials. The aim of this study was to assess for gemcitabine-induced cell death following infusion of drug under clinically-relevant conditions of infusion rate and drug exposure in an in vitro bioreactor system.

Methods

To estimate an appropriate harvest time for cells from the bioreactor after drug treatment, we estimated the temporal relationship between gemcitabine treatment for 1 h and cell death at a later time point with monolayer growth assays (i.e., static culture). Afterward, 5.3 mg gemcitabine was infused over 0.5 h in the bioreactor, followed by mono-exponential decay, simulating patient concentration–time profiles (n = 4). Controls were run with drug-free media (n = 4). Cells were harvested from the bioreactor at a later time point and assessed for cell death by flow cytometry.

Results

According to monolayer growth assay results, cytotoxicity became more apparent with increasing time. The E Max for cells 48 h after treatment was 50% and after 144 h, 93% (P = 0.022; t test), while flow cytometry showed complete DNA degradation by 120 h. Gemcitabine was infused in the bioreactor. The gemcitabine area under the concentration–time curve (AUC) was 56.4 μM h and the maximum concentration was 87.5 ± 2.65 μM. Flow cytometry results were as follows: the G1 fraction decreased from 65.1 ± 4.91 to 28.6 ± 12% (P = 0.005) and subG1 increased from 14.1 ± 5.28 to 42.6 ± 9.78% (P = 0.004) relative to control. An increase in apoptotic cells was observed by TUNEL assay.

Conclusions

The in vitro bioreactor system will be expanded to test additional cell lines, and will serve as a useful model system for assessing the role of drug pharmacokinetics in delivery of optimized anticancer treatment.

Keywords

Gemcitabine Bioreactor SubG1 MDA-MB-231 cells Pharmacokinetics 

Notes

Acknowledgments

This work was supported in part by the Cancer Center Translational Breast Cancer Award to M.N.K.

References

  1. 1.
    Spratlin J, Sangha R, Glubrecht D, Dabbagh L, Young JD, Dumontet C, Cass C, Lai R, Mackey JR (2004) The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res 10(20):6956–6961PubMedCrossRefGoogle Scholar
  2. 2.
    Mackey JR, Mani RS, Selner M, Mowles D, Young JD, Belt JA, Crawford CR, Cass CE (1998) Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res 58(19):4349–4357PubMedGoogle Scholar
  3. 3.
    Garcia-Manteiga J, Molina-Arcas M, Casado FJ, Mazo A, Pastor-Anglada M (2003) Nucleoside transporter profiles in human pancreatic cancer cells: role of hCNT1 in 2′,2′-difluorodeoxycytidine-induced cytotoxicity. Clin Cancer Res 9(13):5000–5008PubMedGoogle Scholar
  4. 4.
    Krishnan P, Fu Q, Lam W, Liou JY, Dutschman G, Cheng YC (2002) Phosphorylation of pyrimidine deoxynucleoside analog diphosphates: selective phosphorylation of l-nucleoside analog diphosphates by 3-phosphoglycerate kinase. J Biol Chem 277(7):5453–5459PubMedCrossRefGoogle Scholar
  5. 5.
    Bouffard DY, Laliberte J, Momparler RL (1993) Kinetic studies on 2′,2′-difluorodeoxycytidine (Gemcitabine) with purified human deoxycytidine kinase and cytidine deaminase. Biochem Pharmacol 45(9):1857–1861PubMedCrossRefGoogle Scholar
  6. 6.
    Liou JY, Dutschman GE, Lam W, Jiang Z, Cheng YC (2002) Characterization of human UMP/CMP kinase and its phosphorylation of d- and l-form deoxycytidine analogue monophosphates. Cancer Res 62(6):1624–1631PubMedGoogle Scholar
  7. 7.
    Heinemann V, Xu YZ, Chubb S, Sen A, Hertel LW, Grindey GB, Plunkett W, (1990) Inhibition of ribonucleotide reduction in CCRF-CEM cells by 2′,2′-difluorodeoxycytidine. Mol Pharmacol 38(4):567–572PubMedGoogle Scholar
  8. 8.
    Ross DD, Cuddy DP (1994) Molecular effects of 2′,2′-difluorodeoxycytidine (Gemcitabine) on DNA replication in intact HL-60 cells. Biochem Pharmacol 48(8):1619–1630PubMedCrossRefGoogle Scholar
  9. 9.
    Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W (1991) Action of 2′,2′-difluorodeoxycytidine on DNA synthesis. Cancer Res 51(22):6110–6117PubMedGoogle Scholar
  10. 10.
    Plunkett W, Huang P, Gandhi V (1995) Preclinical characteristics of gemcitabine. Anticancer Drugs 6(Suppl 6):7–13PubMedCrossRefGoogle Scholar
  11. 11.
    Abbruzzese JL, Grunewald R, Weeks EA, Gravel D, Adams T, Nowak B, Mineishi S, Tarassoff P, Satterlee W, Raber MN et al (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9(3):491–498PubMedGoogle Scholar
  12. 12.
    Venook AP, Egorin MJ, Rosner GL, Hollis D, Mani S, Hawkins M, Byrd J, Hohl R, Budman D, Meropol NJ, Ratain MJ (2000) Phase I and pharmacokinetic trial of gemcitabine in patients with hepatic or renal dysfunction: Cancer and Leukemia Group B 9565. J Clin Oncol 18(14):2780–2787PubMedGoogle Scholar
  13. 13.
    Bengala C, Guarneri V, Giovannetti E, Lencioni M, Fontana E, Mey V, Fontana A, Boggi U, Del Chiaro M, Danesi R, Ricci S, Mosca F, Del Tacca M, Conte PF (2005) Prolonged fixed dose rate infusion of gemcitabine with autologous haemopoietic support in advanced pancreatic adenocarcinoma. Br J Cancer 93(1):35–40PubMedCrossRefGoogle Scholar
  14. 14.
    Tempero M, Plunkett W, Ruiz Van Haperen V, Hainsworth J, Hochster H, Lenzi R, Abbruzzese J (2003) Randomized phase II comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol 21(18):3402–3408PubMedCrossRefGoogle Scholar
  15. 15.
    Kirstein MN, Brundage RC, Elmquist WF, Remmel RP, Marker PH, Guire DE, Yee D (2006) Characterization of an in vitro cell culture bioreactor system to evaluate anti-neoplastic drug regimens. Breast Cancer Res Treat 96(3):217–225PubMedCrossRefGoogle Scholar
  16. 16.
    Chen M, Hough AM, Lawrence TS (2000) The role of p53 in gemcitabine-mediated cytotoxicity and radiosensitization. Cancer Chemother Pharmacol 45(5):369–374PubMedCrossRefGoogle Scholar
  17. 17.
    Matranga CB, Shapiro GI (2002) Selective sensitization of transformed cells to flavopiridol-induced apoptosis following recruitment to S-phase. Cancer Res 62(6):1707–1717PubMedGoogle Scholar
  18. 18.
    Twentyman PR, Luscombe M (1987) A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer 56(3):279–285PubMedGoogle Scholar
  19. 19.
    Hill A (1913) Biochem J 7:471–480PubMedGoogle Scholar
  20. 20.
    D’Argenio DZaS A (1997) ADAPT II User’s Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis Software. In: Biomedical Simulations Resource, Los AngelesGoogle Scholar
  21. 21.
    Zhuang Y, Fraga CH, Hubbard KE, Hagedorn N, Panetta JC, Waters CM, Stewart CF (2006) Topotecan central nervous system penetration is altered by a tyrosine kinase inhibitor. Cancer Res 66(23):11305–11313PubMedCrossRefGoogle Scholar
  22. 22.
    Dumez H, Louwerens M, Pawinsky A, Planting AS, de Jonge MJ, Van Oosterom AT, Highley M, Guetens G, Mantel M, de Boeck G, de Bruijn E, Verweij J (2002) The impact of drug administration sequence and pharmacokinetic interaction in a phase I study of the combination of docetaxel and gemcitabine in patients with advanced solid tumors. Anticancer Drugs 13(6):583–593PubMedCrossRefGoogle Scholar
  23. 23.
    Kroep JR, Giaccone G, Voorn DA, Smit EF, Beijnen JH, Rosing H, van Moorsel CJ, van Groeningen CJ, Postmus PE, Pinedo HM, Peters GJ (1999) Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer. J Clin Oncol 17(7):2190–2197PubMedGoogle Scholar
  24. 24.
    Ferrari M, Fornasiero MC, Isetta AM (1990) MTT colorimetric assay for testing macrophage cytotoxic activity in vitro. J Immunol Methods 131(2):165–172PubMedCrossRefGoogle Scholar
  25. 25.
    Gooch JL, Van Den Berg CL, Yee D (1999) Insulin-like growth factor (IGF)-I rescues breast cancer cells from chemotherapy-induced cell death-proliferative and anti-apoptotic effects. Breast Cancer Res Treat 56(1):1–10PubMedCrossRefGoogle Scholar
  26. 26.
    Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G (1999) Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer 35(5):796–807PubMedCrossRefGoogle Scholar
  27. 27.
    Cappella P, Tomasoni D, Faretta M, Lupi M, Montalenti F, Viale F, Banzato F, D’Incalci M, Ubezio P (2001) Cell cycle effects of gemcitabine. Int J Cancer 93(3):401–408PubMedCrossRefGoogle Scholar
  28. 28.
    Ng SSW, Tsao MS, Chow S, Hedley DW (2000) Inhibition of phosphatidylinositide 3-kinase enhances gemcitabine-induced apoptosis in human pancreatic cancer cells. Cancer Res 60(19):5451–5455PubMedGoogle Scholar
  29. 29.
    Pauwels B, Korst AE, Pattyn GG, Lambrechts HA, Van Bockstaele DR, Vermeulen K, Lenjou M, de Pooter CM, Vermorken JB, Lardon F (2003) Cell cycle effect of gemcitabine and its role in the radiosensitizing mechanism in vitro. Int J Radiat Oncol Biol Phys 57(4):1075–1083PubMedCrossRefGoogle Scholar
  30. 30.
    Perabo FG, Lindner H, Schmidt D, Huebner D, Blatter J, Fimmers R, Muller SC, Albers P (2003) Preclinical evaluation of gemcitabine/paclitaxel-interactions in human bladder cancer lines. Anticancer Res 23(6C):4805–4814PubMedGoogle Scholar
  31. 31.
    Ali S, El-Rayes BF, Aranha O, Sarkar FH, Philip PA (2005) Sequence dependent potentiation of gemcitabine by flavopiridol in human breast cancer cells. Breast Cancer Res Treat 90(1):25–31PubMedCrossRefGoogle Scholar
  32. 32.
    Chandler NM, Canete JJ, Callery MP (2004) Caspase-3 drives apoptosis in pancreatic cancer cells after treatment with gemcitabine. J Gastrointest Surg 8(8):1072–1078PubMedCrossRefGoogle Scholar
  33. 33.
    Serrano MJ, Sanchez-Rovira P, Algarra I, Jaen A, Lozano A, Gaforio JJ (2002) Evaluation of a gemcitabine-doxorubicin-paclitaxel combination schedule through flow cytometry assessment of apoptosis extent induced in human breast cancer cell lines. Jpn J Cancer Res 93(5):559–566PubMedGoogle Scholar
  34. 34.
    Hernandez-Vargas H, Rodriguez-Pinilla SM, Julian-Tendero M, Sanchez-Rovira P, Cuevas C, Anton A, Rios MJ, Palacios J, Moreno-Bueno G (2006) Gene expression profiling of breast cancer cells in response to gemcitabine: NF-kappaB pathway activation as a potential mechanism of resistance. Breast Cancer Res Treat 102(2):157–172PubMedCrossRefGoogle Scholar
  35. 35.
    Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62PubMedCrossRefGoogle Scholar
  36. 36.
    Shi Z, Azuma A, Sampath D, Li YX, Huang P, Plunkett W (2001) S-Phase arrest by nucleoside analogues and abrogation of survival without cell cycle progression by 7-hydroxystaurosporine. Cancer Res 61(3):1065–1072PubMedGoogle Scholar
  37. 37.
    Huang P, Plunkett W (1995) Fludarabine- and gemcitabine-induced apoptosis: incorporation of analogs into DNA is a critical event. Cancer Chemother Pharmacol 36(3):181–188PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mark N. Kirstein
    • 1
  • Richard C. Brundage
    • 2
  • Megan M. Moore
    • 2
  • Brent W. Williams
    • 2
  • Lisa A. Hillman
    • 2
  • Jason W. Dagit
    • 2
    • 3
  • James E. Fisher
    • 2
    • 3
  • Paul H. Marker
    • 4
  • Robert A. Kratzke
    • 5
  • Douglas Yee
    • 5
  1. 1.Department of Experimental and Clinical Pharmacology, College of Pharmacy and Comprehensive Cancer CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Experimental and Clinical Pharmacology, College of PharmacyUniversity of MinnesotaMinneapolisUSA
  3. 3.Clinical Pharmacology Analytical ServicesUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Medicine and Stem Cell InstituteUniversity of MinnesotaMinneapolisUSA
  5. 5.Department of Medicine and Cancer CenterUniversity of MinnesotaMinneapolisUSA

Personalised recommendations