Cancer Chemotherapy and Pharmacology

, Volume 61, Issue 2, pp 231–242 | Cite as

Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells

  • David H. Holman
  • Lorianne S. Turner
  • Ahmed El-Zawahry
  • Saeed Elojeimy
  • Xiang Liu
  • Jacek Bielawski
  • Zdzislaw M. Szulc
  • Kristi Norris
  • Youssef H. Zeidan
  • Yusuf A. Hannun
  • Alicja Bielawska
  • James S. Norris
Original Article



Alterations in ceramide metabolism have been reported in prostate cancer (PCa), resulting in escape of cancer cells from ceramide-induced apoptosis. Specifically, increased expression of lysosomal acid ceramidase (AC) has been shown in some primary PCa tissues and in several PCa cell lines. To determine if this represents a novel therapeutic target, we designed and synthesized LCL204, a lysosomotropic analog of B13, a previously reported inhibitor of AC


Prostate cancer cell lines were treated with LCL204 for varying times and concentrations. Effects of treatment on cytotoxicity, sphingolipid content, and apoptotic markers were assessed.


Treatment of DU145 PCa cells resulted in increased ceramide and decreased sphingosine levels. Interestingly, LCL204 caused degradation of AC in a cathepsin-dependent manner. We also observed rapid destabilization of lysosomes and the release of lysosomal proteases into the cytosol following treatment with LCL204. Combined, these events resulted in mitochondria depolarization and executioner caspase activation, ultimately ending in apoptosis


These results provide evidence that treatment with molecules such as LCL204, which restore ceramide levels in PCa cells may serve as a new viable treatment option for PCa.


Ceramide Lysosomes Apoptosis LCL204 B13 Acid ceramidase inhibitors 



Prostate cancer


Hormone-refractory prostate cancer


Acid ceramidase


Acid sphingomyelinase


LysoTracker Red


Lysosomal membrane permeabilization



We thank Rick Peppler of the MUSC Flow Cytometry Facility for acquisition of flow cytometry data. We would also like to thank the MUSC Lipidomics Core for the synthesis of sphingolipid reagents and sphingolipid analysis. This work was supported by NIH/NCI PO1 CA97132 and HCC/DOD N6311601MD10004.


  1. 1.
    Adams JM, Cory S (1998) The bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326PubMedCrossRefGoogle Scholar
  2. 2.
    Bielawska A, Linardic CM, Hannun YA (1992) Ceramide-mediated biology. Determination of structural and stereospecific requirements through the use of n-acyl-phenylaminoalcohol analogs. J Biol Chem 267:18493–18497PubMedGoogle Scholar
  3. 3.
    Bielawska A, Greenberg MS, Perry D, Jayadev S, Shayman JA, McKay C, Hannun YA (1996) (1s,2r)-d-erythro-2-(n-myristoylamino)-1-phenyl-1-propanol as an inhibitor of ceramidase. J Biol Chem 271:12646–12654PubMedCrossRefGoogle Scholar
  4. 4.
    Bielawski J, Szulc ZM, Hannun YA, Bielawska A (2006) Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods 39:82–91PubMedCrossRefGoogle Scholar
  5. 5.
    Boya P, Gonzalez-Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G (2003) Mitochondrial membrane permeabilization is a critical step of lysosome-initiated apoptosis induced by hydroxychloroquine. Oncogene 22:3927–3936PubMedCrossRefGoogle Scholar
  6. 6.
    Buttle DJ, Murata M, Knight CG, Barrett AJ (1992) Ca074 methyl ester: a proinhibitor for intracellular cathepsin b. Arch Biochem Biophys 299:377–380PubMedCrossRefGoogle Scholar
  7. 7.
    Cartron PF, Juin P, Oliver L, Martin S, Meflah K, Vallette FM (2003) Nonredundant role of bax and bak in bid-mediated apoptosis. Mol Cell Biol 23:4701–4712PubMedCrossRefGoogle Scholar
  8. 8.
    Dagan A, Wang C, Fibach E, Gatt S (2003) Synthetic, non-natural sphingolipid analogs inhibit the biosynthesis of cellular sphingolipids, elevate ceramide and induce apoptotic cell death. Biochim Biophys Acta 1633:161–169PubMedGoogle Scholar
  9. 9.
    Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901PubMedCrossRefGoogle Scholar
  10. 10.
    Elojeimy S, Holman DH, Liu X, El-Zawahry A, Villani M, Cheng JC, Mahdy A, Zeidan Y, Bielwaska A, Hannun YA, Norris JS (2006) New insights on the use of desipramine as an inhibitor for acid ceramidase. FEBS Lett 580:4751–4756PubMedCrossRefGoogle Scholar
  11. 11.
    Ferlinz K, Kopal G, Bernardo K, Linke T, Bar J, Breiden B, Neumann U, Lang F, Schuchman EH, Sandhoff K (2001) Human acid ceramidase: processing, glycosylation, and lysosomal targeting. J Biol Chem 276:35352–35360PubMedCrossRefGoogle Scholar
  12. 12.
    Granot T, Milhas D, Carpentier S, Dagan A, Segui B, Gatt S, Levade T (2006) Caspase-dependent and -independent cell death of jurkat human leukemia cells induced by novel synthetic ceramide analogs. Leukemia 20:392–399PubMedCrossRefGoogle Scholar
  13. 13.
    He X, Okino N, Dhami R, Dagan A, Gatt S, Schulze H, Sandhoff K, Schuchman EH (2003) Purification and characterization of recombinant, human acid ceramidase. Catalytic reactions and interactions with acid sphingomyelinase. J Biol Chem 278:32978–32986PubMedCrossRefGoogle Scholar
  14. 14.
    Hurwitz R, Ferlinz K, Sandhoff K (1994) The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 375:447–450PubMedGoogle Scholar
  15. 15.
    Hyer ML, Voelkel-Johnson C, Rubinchik S, Dong J, Norris JS (2000) Intracellular fas ligand expression causes fas-mediated apoptosis in human prostate cancer cells resistant to monoclonal antibody-induced apoptosis. Mol Ther 2:348–358PubMedCrossRefGoogle Scholar
  16. 16.
    Hyer ML, Sudarshan S, Kim Y, Reed JC, Dong JY, Schwartz DA, Norris JS (2002) Downregulation of c-flip sensitizes du145 prostate cancer cells to fas-mediated apoptosis. Cancer Biol Ther 1:401–406PubMedGoogle Scholar
  17. 17.
    Kagedal K, Zhao M, Svensson I, Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 359:335–343PubMedCrossRefGoogle Scholar
  18. 18.
    Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110:3–8PubMedCrossRefGoogle Scholar
  19. 19.
    Kornfeld S, Mellman I (1989) The biogenesis of lysosomes. Annu Rev Cell Biol 5:483–525PubMedCrossRefGoogle Scholar
  20. 20.
    Liu X, Elojeimy S, El-Zawahry AM, Holman DH, Bielawska A, Bielawski J, Rubinchik S, Guo GW, Dong JY, Keane T, Hannun YA, Tavassoli M, Norris JS (2006) Modulation of ceramide metabolism enhances viral protein apoptin’s cytotoxicity in prostate cancer. Mol Ther 14:637–646PubMedCrossRefGoogle Scholar
  21. 21.
    Liu YY, Han TY, Giuliano AE, Hansen N, Cabot MC (2000) Uncoupling ceramide glycosylation by transfection of glucosylceramide synthase antisense reverses adriamycin resistance. J Biol Chem 275:7138–7143PubMedCrossRefGoogle Scholar
  22. 22.
    Mandic A, Viktorsson K, Molin M, Akusjarvi G, Eguchi H, Hayashi SI, Toi M, Hansson J, Linder S, Shoshan MC (2001) Cisplatin induces the proapoptotic conformation of bak in a deltamekk1-dependent manner. Mol Cell Biol 21:3684–3691PubMedCrossRefGoogle Scholar
  23. 23.
    Michael JM, Lavin MF, Watters DJ (1997) Resistance to radiation-induced apoptosis in burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res 57:3600–3605PubMedGoogle Scholar
  24. 24.
    Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ (2001) Bax and bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol 153:1265–1276PubMedCrossRefGoogle Scholar
  25. 25.
    Norris JS, Bielawska A, Day T, El-Zawahri A, Elojeimy S, Hannun Y, Holman D, Hyer M, Landon C, Lowe S, Dong JY, McKillop J, Norris K, Obeid L, Rubinchik S, Tavassoli M, Tomlinson S, Voelkel-Johnson C, Liu X (2006) Combined therapeutic use of adgfpfasl and small molecule inhibitors of ceramide metabolism in prostate and head and neck cancers: a status report. Cancer Gene Ther 13:1045–1051Google Scholar
  26. 26.
    Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic bcl-2 family members. Biochem Pharmacol 66:1335–1340PubMedCrossRefGoogle Scholar
  27. 27.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616PubMedCrossRefGoogle Scholar
  28. 28.
    Raisova M, Goltz G, Bektas M, Bielawska A, Riebeling C, Hossini AM, Eberle J, Hannun YA, Orfanos CE, Geilen CC (2002) Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and hacat keratinocytes. FEBS Lett 516:47–52PubMedCrossRefGoogle Scholar
  29. 29.
    Reed JC (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430PubMedGoogle Scholar
  30. 30.
    Roberg K, Johansson U, Ollinger K (1999) Lysosomal release of cathepsin d precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 27:1228–1237PubMedCrossRefGoogle Scholar
  31. 31.
    Samsel L, Zaidel G, Drumgoole HM, Jelovac D, Drachenberg C, Rhee JG, Brodie AM, Bielawska A, Smyth MJ (2004) The ceramide analog, b13, induces apoptosis in prostate cancer cell lines and inhibits tumor growth in prostate cancer xenografts. Prostate 58:382–393PubMedCrossRefGoogle Scholar
  32. 32.
    Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R (1999) Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442:117–121PubMedCrossRefGoogle Scholar
  33. 33.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) Bax and bak regulation of endoplasmic reticulum Ca2+: a control point for apoptosis [see comment]. Science 300:135–139PubMedCrossRefGoogle Scholar
  34. 34.
    Seelan RS, Qian C, Yokomizo A, Bostwick DG, Smith DI, Liu W (2000) Human acid ceramidase is overexpressed but not mutated in prostate cancer. Genes Chromosomes Cancer 29:137–146PubMedCrossRefGoogle Scholar
  35. 35.
    Selzner M, Bielawska A, Morse MA, Rudiger HA, Sindram D, Hannun YA, Clavien PA (2001) Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–1240PubMedGoogle Scholar
  36. 36.
    Senchenkov A, Litvak DA, Cabot MC (2001) Targeting ceramide metabolism—a strategy for overcoming drug resistance. J Natl Cancer Inst 93:347–357PubMedCrossRefGoogle Scholar
  37. 37.
    Sternberg CN (2003) What’s new in the treatment of advanced prostate cancer? Eur J Cancer 39:136–146PubMedCrossRefGoogle Scholar
  38. 38.
    Strelow A, Bernardo K, Adam-Klages S, Linke T, Sandhoff K, Kronke M, Adam D (2000) Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. J Exp Med 192:601–612PubMedCrossRefGoogle Scholar
  39. 39.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  40. 40.
    Wang XZ, Beebe JR, Pwiti L, Bielawska A, Smyth MJ (1999) Aberrant sphingolipid signaling is involved in the resistance of prostate cancer cell lines to chemotherapy. Cancer Res 59:5842–5848PubMedGoogle Scholar
  41. 41.
    Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) Tbid, a membrane-targeted death ligand, oligomerizes bak to release cytochrome c. Genes Dev 14:2060–2071PubMedGoogle Scholar
  42. 42.
    Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2:169–178PubMedCrossRefGoogle Scholar
  43. 43.
    Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic bak is sequestered by mcl-1 and bcl-xl, but not bcl-2, until displaced by bh3-only proteins. Genes Dev 19:1294–1305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • David H. Holman
    • 1
  • Lorianne S. Turner
    • 1
  • Ahmed El-Zawahry
    • 1
  • Saeed Elojeimy
    • 1
  • Xiang Liu
    • 1
  • Jacek Bielawski
    • 2
  • Zdzislaw M. Szulc
    • 2
  • Kristi Norris
    • 3
  • Youssef H. Zeidan
    • 2
  • Yusuf A. Hannun
    • 2
  • Alicja Bielawska
    • 2
  • James S. Norris
    • 1
  1. 1.Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Biochemistry and Molecular BiologyMedical University of South CarolinaCharlestonUSA
  3. 3.Biochemistry Section, Surgical Neurology BranchNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA

Personalised recommendations