Skip to main content

Advertisement

Log in

Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

This study was to evaluate the correlation of two important strategies, namely, cell cycle proliferation arrest and anti-angiogenesis. We chose fascaplysin, a marine natural product with selective CDK4 selective inhibition activity, to study its potential anti-angiogenesis effects in vivo and in vitro.

Methods

Chorioallantoic membrane (CAM) assay was initially used as an in vivo approach to evaluate anti-angiogenic activity of fascaplysin. In addition, human umbilical vein endothelial cell (HUVEC) line was used to further confirm the anti-angiogenic activity of fascaplysin in vitro. To explore the mechanism of anti-angiogenesis, we examined the effect of fascaplysin on vascular endothelial growth factor (VEGF) expression and secretion by hepatocarcinoma cells BeL-7402.

Results

The results of CAM assay suggested fascaplysin inhibited capillary plexus formation in a dose-dependent manner and suppressed VEGF in cross section. Moreover, the in vitro assay also confirmed that fascaplysin provided selective inhibition of endothelial cells proliferation towards tumor cells in low concentration. The immunocytochemical staining and ELISA verified fascaplysin could inhibit VEGF expression and secretion by BeL-7402.

Conclusions

These findings strongly suggest that fascaplysin is a natural angiogenesis inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP, Forrester K, Gerwin B, Serrano M, Beach DH (1994) Mutations and altered expression of p16INK4A in human cancer. Proc Natl Acad Sci USA 91(23):11045–11049

    Article  PubMed  CAS  Google Scholar 

  2. Kim H, Ham EK, Kim YI, Chi JG, Lee HS, Park SH, Jung YM, Myung NK, Lee MJ, Jang JJ (1998) Overexpression of cyclin D1 and cdk4 in tumorigenesis of sporadic hepatoblastomas. Cancer Lett 131(2):177–183

    Article  PubMed  CAS  Google Scholar 

  3. Fry DW, Bedford DC, Harvey PH, Fritsch A, Keller PR, Wu Z, Dobrusin E, Leopold WR, Fattaey A, Garrett MD (2001) Cell cycle and biochemical effects of PD 0183812. A potent inhibitor of the cyclin D-dependent kinases CDK4 and CDK6. J Biol Chem 276(20):16617–16623

    Article  PubMed  CAS  Google Scholar 

  4. Garrett MD, Fattaey A (1999) CDK inhibition and cancer therapy. Curr Opin Genet Dev 9(1):104–111

    Article  PubMed  CAS  Google Scholar 

  5. Roll DM, Ireland CM, Lu HSM, Clardy J (1988) Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp. J Org Chem 53:3276–3278

    Article  CAS  Google Scholar 

  6. Soni R, Muller L, Furet P, Schoepfer J, Stephan C, Zumstein-Mecker S, Fretz H, Chaudhuri B (2000) Inhibition of cyclin-dependent kinase 4 (Cdk4) by fascaplysin, a marine natural product. Biochem Biophys Res Commun 275(3):877–884

    Article  PubMed  CAS  Google Scholar 

  7. Radchenko OS, Novikov VL, Elyakov GB (1997) A simple and practical approach to the synthesis of the marine sponge pigment fascaplysin and related compounds. Tetrahedron Lett 38:5339–5342

    Article  CAS  Google Scholar 

  8. Huwe A, Mazitschek R, Giannis A (2003) Small molecules as inhibitors of cyclin-dependent kinases. Angew Chem Int Ed Engl 42(19):2122–2138

    Article  PubMed  CAS  Google Scholar 

  9. Senderowicz AM (2003) Small-molecule cyclin-dependent kinase modulators. Oncogene 22(42):6609–6620

    Article  PubMed  CAS  Google Scholar 

  10. Klagsbrun M, Moses MA (1999) Molecular angiogenesis. Chem Biol 6:217–224

    Article  Google Scholar 

  11. Mise M, Arii S, Higashituji H, Furutani M, Niwano M, Harada T, Ishigami S, Toda Y, Nakayama H, Fukumoto M, Fujita J, Imamura M (1996) Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology 23:455–464

    Article  PubMed  CAS  Google Scholar 

  12. Richardson M, Singh G (2003) Observations on the use of the avian chorioallantoic membrane (CAM) model in investigations into angiogenesis. Curr Drug Targets Cardiovasc Haematol Disord 3(2):155–185

    Article  PubMed  CAS  Google Scholar 

  13. Ribatti D, Gualandris A, Bastaki M, Vacca A, Iurlaro M, Roncali L, Presta M (1997) New model for the study of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane: the gelatin sponge/chorioallantoic membrane assay. J Vasc Res 34(6):455–463

    PubMed  CAS  Google Scholar 

  14. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  CAS  Google Scholar 

  15. Folkman J (1974) Proceedings: tumor angiogenesis factor. Cancer Res 34:2109–2113

    PubMed  CAS  Google Scholar 

  16. Ingber DE (1992) Extracellular matrix as a solid-state regulator in angiogenesis: identification of new targets for anti-cancer therapy. Semin Cancer Biol 3(2):57–63

    PubMed  CAS  Google Scholar 

  17. Xu G, Pan J, Martin C, Yeung SJ (2001) Angiogenesis inhibition in the in vivo antineoplastic effect of manumycin and paclitaxel against anaplastic thyroid carcinoma. J Clin Endocrinol Metab 86(4):1769–1777

    Article  PubMed  CAS  Google Scholar 

  18. Nuijen B, Bouma M, Manada C, Jimeno JM, Schellens JH, Bult A, Beijnen JH (2000) Pharmaceutical development of anticancer agents derived from marine sources. Anticancer Drugs 11(10):793–811

    Article  PubMed  CAS  Google Scholar 

  19. Cragg GM, Newman DJ (1999) Discovery and development of antineoplastic agents from natural sources. Cancer Invest 17(2):153–163

    Article  PubMed  CAS  Google Scholar 

  20. Schwartsmann G (2000) Marine organisms and other novel natural sources of new cancer drugs. Ann Oncol 11:235–243

    Article  PubMed  Google Scholar 

  21. Folkman J (1985) Tumor angiogenesis. Adv Cancer Res 43:175–203

    Article  PubMed  CAS  Google Scholar 

  22. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364

    Article  PubMed  CAS  Google Scholar 

  23. Boehm T, Folkman J, Browder T, O’Reilly MS (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390(6658):404–407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Program for New Century Excellent Talents in University (NECT-04-0555), NSFC project (20472040), and Ningbo City Science and Technology Project (2003C10003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, J., Yan, XJ. & Chen, HM. Fascaplysin, a selective CDK4 inhibitor, exhibit anti-angiogenic activity in vitro and in vivo. Cancer Chemother Pharmacol 59, 439–445 (2007). https://doi.org/10.1007/s00280-006-0282-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0282-x

Keywords

Navigation