Advertisement

Cancer Chemotherapy and Pharmacology

, Volume 59, Issue 3, pp 349–360 | Cite as

cDNA microarray study to identify expression changes relevant for apoptosis in K562 cells co-treated with amifostine and imatinib

  • Michele BianchiniEmail author
  • Giovanni Martinelli
  • Matteo Renzulli
  • Marcela Gonzalez Cid
  • Irene Larripa
Original Article

Abstract

Purpose

Chronic myeloid leukemia is a clonal myeloproliferative disorder characterized by the presence of the fusion gene BCR/ABL. We had previously demonstrated an increased proapoptotic effect of imatinib (STI571) in combination with amifostine (AMI) in K562 cell line. In this study, we used genomic scale gene expression profiling to monitor changes at transcriptional level in K562 cells during the treatment with AMI + STI571.

Materials and methods

cRNA from Control and treated K562 cells were mixed in equal amounts and incubated with a microarray slide for hybridization. RNA from six independent paired experiments was subjected to transcriptional profiling. With the aim to automate the process of biological theme determination, selected genes were further analyzed by EASE. Validation of the expression was carried out by quantitative real-time PCR and western blotting.

Results

As expected, a small percentage of genes accounts for the effects of the combined drug treatment. We identified 61 sequences corresponding to known genes; 17 of the 61 genes were up regulated, such as RHO6, PPP2R5E, PPM1E and BTF that appear to reflect favorable events for apoptosis induction. Between down regulated genes, API5, TUBB2 and TLK1 are also of considerable interest.

Conclusion

We identified a transcriptional repressor of survival genes, known as BTF, which triggers a proapoptotic signal, potentially helpful to overcome the resistance to STI571. This finding could be particularly useful to design novel therapeutic strategies for leukemia patients. This study demonstrates the importance of in vitro testing of a novel drug combination most likely to predict its potential usefulness for in vivo application.

Keywords

Microarray Apoptosis Amifostine Imatinib BTF 

Notes

Acknowledgments

This paper was supported by grants from CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), ANPCyT (Agencia Nacional de Promoción Científica y Técnica), Academia Nacional de Medicina, Cofin 2003 (M. Baccarani), AIL, AIRC, Fondazione Del Monte di Bologna e Ravenna, FIRB 2001 and Ateneo 60% grants.

References

  1. 1.
    Cortes JE, Talpaz M, Kantarjian H (1996) Chronic myelogenous leukemia: a review. Am J Med 100:555–570PubMedCrossRefGoogle Scholar
  2. 2.
    Laurent E, Talpaz M, Kantarjian H, Kurzrock R (2001) The BCR gene and Philadelphia chromosome-positive leukemogenesis. Cancer Res 61:2343–2355PubMedGoogle Scholar
  3. 3.
    Faderl S, Talpaz M, Estrov Z, O’Brien S, Kurzrock R, Kantarjian HM (1999) The biology of chronic myeloid leukemia. N Engl J Med 341:164–172PubMedCrossRefGoogle Scholar
  4. 4.
    Evans C, Owen-Lynch P, Whetton AD, Dive C (1993) Activation of the Abelson tyrosine kinase activity is associated with suppression of apoptosis in hemopoietic cells. Cancer Res 53:1735–1738PubMedGoogle Scholar
  5. 5.
    Goldman JM, Melo JV (2003) Chronic myeloid leukemia—advances in biology and new approaches to treatment. N Engl J Med 349:1451–1464PubMedCrossRefGoogle Scholar
  6. 6.
    Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942PubMedCrossRefGoogle Scholar
  7. 7.
    Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, Capdeville R, Talpaz M (2001) Activity of a specific inhibitor of the BCR/ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344:1038–1042PubMedCrossRefGoogle Scholar
  8. 8.
    Deininger M, Buchdunger E, Druker BJ (2005a) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105(7):2640–2653CrossRefGoogle Scholar
  9. 9.
    Hochhaus A, Kreil S, Corbin AS, La Rosee P, Muller MC, Lahaye T, Hanfstein B, Schoch C, Cross NC, Berger U, Gschaidmeier H, Druker BJ, Hehlmann R (2002) Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy. Leukemia 16(11):2190–2196PubMedCrossRefGoogle Scholar
  10. 10.
    Hui CH, Hughes TP (2003) Strategies for the treatment of imatinib-resistant chronic myeloid leukemia. Clin Adv Hematol Oncol 1(9):538–545, 559Google Scholar
  11. 11.
    Mahon FX, Deininger MW, Schultheis B, Chabrol J, Reiffers J, Goldman JM, Melo JV (2000) Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571: diverse mechanisms of resistance. Blood 96:1070–1079PubMedGoogle Scholar
  12. 12.
    Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L (2003) Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 4(2):75–85PubMedCrossRefGoogle Scholar
  13. 13.
    Porosnicu M, Nimmanapalli R, Nguyen D, Worthington E, Perkins C, Bhalla KN (2001) Co-treatment with As2O3 enhances selective cytotoxic effects of STI-571 against Brc-Abl-positive acute leukemia cells. Leukemia 5:772–778CrossRefGoogle Scholar
  14. 14.
    Kim JS, Jeung HK, Cheong JW, Maeng H, Lee ST, Hahn JS, Ko YW, Min YH (2004) Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br J Haematol 124(2):166–178PubMedCrossRefGoogle Scholar
  15. 15.
    Deininger M, Buchdunger E, Druker BJ (2005b) The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood 105(7):2640–2653CrossRefGoogle Scholar
  16. 16.
    Vellon L, Gonzalez Cid M, Nebel MD, Larripa I (2005) Additive apoptotic effect of STI571 with the cytoprotective agent amifostine in K-562 cell line. Cancer Chemother Pharmacol 55:602–608PubMedCrossRefGoogle Scholar
  17. 17.
    Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275(32):24273–24278PubMedCrossRefGoogle Scholar
  18. 18.
    Hosack DA, Dennis G Jr, Sherman BT, Lane HC, Lempicki RA (2003) Identifying biological themes within lists of genes with EASE. Genome Biol 4(10):R70PubMedCrossRefGoogle Scholar
  19. 19.
    Yang YH, Speed T (2002) Design issues for cDNA microarray experiments. Nat Rev Genet 3:579–588PubMedGoogle Scholar
  20. 20.
    Tichopad A, Dilger M, Schwarz G, Pfaffl MW (2003) Standardized determination of real-time PCR efficiency from a single reaction set-up. Nucleic Acids Res 31(22):6688CrossRefGoogle Scholar
  21. 21.
    Grzanka A, Grzanka D, Orlikowska M (2003) Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol 66(8):1611–1617PubMedCrossRefGoogle Scholar
  22. 22.
    Ferrando AA, Penda AM, Llano E, Velasco G, Lidereau R, Carlos Lopez-Otin C (1997) Gene characterization, promoter analysis, and chromosomal localization of human bleomycin hydrolase. J Biol Chem 272(52):33298–33304PubMedCrossRefGoogle Scholar
  23. 23.
    McCright B, Virshup DM (1995) Identification of a new family of protein phosphatase 2A regulatory subunits. J Biol Chem 270(44):26123–26128PubMedCrossRefGoogle Scholar
  24. 24.
    Klumpp S, Krieglstein J (2002) Serine/threonine protein phosphatases in apoptosis. Curr Opin Pharmacol 2(4):458–462PubMedCrossRefGoogle Scholar
  25. 25.
    Saydam G, Aydin HH, Sahin F, Selvi N, Oktem G, Terzioglu E, Buyukkececi F, Omay SB (2003) Involvement of protein phosphatase 2A in interferon-alpha-2b-induced apoptosis in K562 human chronic myelogenous leukaemia cells. Leuk Res 27(8):709–717PubMedCrossRefGoogle Scholar
  26. 26.
    Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, Mao H, Chang JS, Galietta A, Uttam A, Roy DC, Valtieri M, Bruner-Klisovic R, Caligiuri MA, Bloomfield CD, Marcucci G, Perrotti D (2005) The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell 8:355–368PubMedCrossRefGoogle Scholar
  27. 27.
    Nobes CD, Lauritzen I, Mattei MG, Paris S, Hall A, Chardin P (1998) A new member of the Rho family, Rnd1, promotes disassembly of actin filament structures and loss of cell adhesion. J Cell Biol 141:187–197PubMedCrossRefGoogle Scholar
  28. 28.
    Kasof GM, Goyal L, White E (1999) Btf, a novel death-promoting transcriptional repressor that interacts with Bcl-2-related proteins. Mol Cell Biol 19:4390–4404PubMedGoogle Scholar
  29. 29.
    Fritz G, Kaina B (1001) Ras-related GTPase RhoB represses NF-kB signaling. J Biol Chem 276:3115–3122CrossRefGoogle Scholar
  30. 30.
    Esteve P, Embade N, Perona R, Jimenez B, del Peso L, Leon J, Arends M, Miki T, Lacal JC (1998) Rho-regulated signals induce apoptosis in vitro and in vivo by a p53-independent, but Bcl2 dependent pathway. Oncogene 17:1855–1869PubMedCrossRefGoogle Scholar
  31. 31.
    Embade N, Valeron PF, Aznar S, Lopez-Collazo E, Juan Carlos Lacal (2000) Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production. Mol Biol Cell 11:4347–4358PubMedGoogle Scholar
  32. 32.
    Lange T, Gunther C, Kohler T, Krahl R, Musiol S, Leiblein S, Al-Ali HK, van Hoomissen I, Niederwieser D, Deininger MW (2003) High levels of BAX, low levels of MRP-1, and high platelets are independent predictors of response to imatinib in myeloid blast crisis of CML. Blood 101(6):2152–2155PubMedCrossRefGoogle Scholar
  33. 33.
    La Rosee P, Johnson K, O’Dwyer ME, Druker BJ (2002) In vitro studies of the combination of imatinib mesylate (Gleevec) and arsenic trioxide (Trisenox) in chronic myelogenous leukemia. Exp Hematol 30(7):729–737PubMedCrossRefGoogle Scholar
  34. 34.
    Tarumoto T, Nagai T, Ohmine K, Miyoshi T, Nakamura M, Kondo T, Mitsugi K, Nakano S, Muroi K, Komatsu N, Ozawa K (2004) Ascorbic acid restores sensitivity to imatinib via suppression of Nrf2-dependent gene expression in the imatinib-resistant cell line. Exp Hematol 32(4):375–381PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Michele Bianchini
    • 1
    Email author
  • Giovanni Martinelli
    • 2
  • Matteo Renzulli
    • 2
  • Marcela Gonzalez Cid
    • 1
  • Irene Larripa
    • 1
  1. 1.Departamento de Genética, Instituto de Investigaciones Hematológicas “Mariano R. Castex”Academia Nacional de MedicinaCapital Federal Buenos AiresArgentina
  2. 2.Institute of Hematology and Medical Oncology “L. e A. Seragnoli”University of BolognaBolognaItaly

Personalised recommendations