Cancer Chemotherapy and Pharmacology

, Volume 58, Issue 5, pp 607–617 | Cite as

Simultaneous sustained release of fludarabine monophosphate and Gd-DTPA from an interstitial liposome depot in rats: potential for indirect monitoring of drug release by magnetic resonance imaging

  • Ruediger E. Port
  • Christian Schuster
  • Christa R. Port
  • Peter Bachert
Original Article


Introduction: Cytostatic depot preparations are interstitially administered for local chemotherapy and prevention of tumor recurrence. It would be of interest to monitor in patients as to when, to what extent, and exactly where, the drug is actually released. Liposomes containing a hydrophilic cytostatic and a hydrophilic contrast agent might be expected to release both agents simultaneously. If so, then drug release could be indirectly followed by monitoring contrast enhancement at the injection site. Methods: Multivesicular liposomes containing the antimetabolite fludarabine monophosphate and the magnetic resonance imaging (MRI) contrast agent Gd-DTPA were subcutaneously injected in rats and both agents were monitored at the injection site for 6 weeks by 19F nuclear magnetic resonance spectroscopy (MRS) in vivo and contrast-enhanced 1H MRI (T 1w 3D FLASH), respectively, in a 1.5-T whole-body tomograph. The MRS and MRI data were analyzed simultaneously by pharmacokinetic modeling using NONMEM. Results: During an initial lag time, the amount of drug at the injection site stayed constant while the contrast-enhanced depot volume expanded beyond the volume injected. Drug amount and depot volume then decreased in parallel. Lag time and elimination half-life were 9 and 6 days, respectively, in three animals, and were about 50% shorter in another animal where the depot split into sub-depots. Conclusion: The preliminary data in rats suggest that simultaneous release of a hydrophilic cytostatic and a hydrophilic contrast agent from an interstitial depot can be achieved by encapsulation in liposomes. Thus, there seems to be a potential for indirect drug monitoring through imaging.


Fludarabine monophosphate Fluorine MR spectroscopy Liposomes Gd-DTPA MR imaging 



We are indebted to Dr. William E. Hull for preparatory in vitro MRS experiments, to Dr. Rainer Umathum for building the 19F/1H animal resonator, and to Dr. Volker Amelung for the pathohistological evaluation of tissue sections.


  1. 1.
    Beal SL, Sheiner LB (eds) (1999) NONMEM version V.1.1, User’s guides. NONMEM Project Group, University of California San Francisco, San FranciscoGoogle Scholar
  2. 2.
    Blumbergs P (1992). U. S. Pat. No. 5,110,919. URL:
  3. 3.
    Bonetti A, Chatelut E, Kim S (1994) An extended-release formulation of methotrexate for subcutaneous administration. Cancer Chemother Pharmacol 33:303–306PubMedCrossRefGoogle Scholar
  4. 4.
    Brownson EA, Langston M, Tsai AG, Gillespie T, Davis TP, Intaglietta M, Sankaram MB (1998) Biodistribution during sustained release from DepoFoam(™, a lipid-based parenteral drug delivery system. Proc Int Symp Control Rel Bioact Mater 25:42–43Google Scholar
  5. 5.
    Chamberlain MC, Khatibi S, Kim JC, Howell SB, Chatelut E, Kim S (1993) Treatment of leptomeningeal metastasis with intraventricular administration of depot cytarabine (DTC 101). A phase I study. Acta Neurol 50:261–264Google Scholar
  6. 6.
    Chen HA, Le Visage C, Qiu B, Du X, Ouwerkerk R, Leong KW, Yang X (2005) MR imaging of biodegradable polymeric microparticles: a potential method of monitoring local drug delivery. Magn Reson Med 53:614–620PubMedCrossRefGoogle Scholar
  7. 7.
    Cullis PR, Hope MJ, Bally MB, Madden TD, Mayer LD, Janoff AS (1987) Liposomes as pharmaceuticals. In: Ostro MJ (eds) Liposomes. From biophysics to therapeutics. Marcel Dekker, New York, pp 39–72Google Scholar
  8. 8.
    Domb AJ (1995) Polymeric carriers for regional drug therapy. Mol Med Today 1:134–139PubMedCrossRefGoogle Scholar
  9. 9.
    Donahue KM, Weisskoff RM, Burstein D (1997) Water diffusion and exchange as they influence contrast enhancement. J Magn Reson Imag 7:102–110CrossRefGoogle Scholar
  10. 10.
    Felix R, Semmler W, Schörmer W, Laniado M (1985) Kontrastmittel in der magnetischen Resonanztomographie. Fortschr Röntgenstr 142(6):641–646CrossRefGoogle Scholar
  11. 11.
    Firth G, Oliver AS, McKeran RO (1984) Studies on the intracerebral injection of bleomycin free and entrapped within liposomes in the rat. J Neurol 47:585–589Google Scholar
  12. 12.
    Fleming AP, Saltzman WM (2002) Pharmacokinetics of the carmustine implant. Clin Pharmacokinet 41(6):403–419PubMedCrossRefGoogle Scholar
  13. 13.
    Gandhi V, Plunkett W (2002) Cellular and clinical pharmacology of fludarabine. Clin Pharmacokin 41:93–103CrossRefGoogle Scholar
  14. 14.
    Guerin C, Olivi A, Weingart JD, Lawson HC, Brem H (2004) Recent advances in brain tumor therapy: local intracerebral drug delivery by polymers. Inv New Drugs 22:27–37CrossRefGoogle Scholar
  15. 15.
    Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters M, Vile RG, Stewart JSW (2001) Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res 7:243–254PubMedGoogle Scholar
  16. 16.
    Kim S, Howell SB (1987) Multivesicular liposomes containing cytarabine for slow-release sc administration. Cancer Treat Rep 71(5):447–450PubMedGoogle Scholar
  17. 17.
    Kim T, Kim J, Kim S (1993) Extended release formulation of morphine for subcutaneous administration. Cancer Chemother Pharmacol 33:187–190PubMedCrossRefGoogle Scholar
  18. 18.
    Mantripragada S (2002) A lipid based depot (DepotFoam technology) for sustained release drug delivery. Prog Lipid Res 41:392–406PubMedCrossRefGoogle Scholar
  19. 19.
    Mardor Y, Rahav O, Zauberman Y, Lidar Z, Ocherashvilli A, Daniels D, Yiftach R, Maier RSE, Orenstein A, Ram Z (2005) Convection-enhanced drug delivery: increased efficacy and magnetic resonance image monitoring. Cancer Res 56(15):6858–6863CrossRefGoogle Scholar
  20. 20.
    Mayer LD, Hope MJ, Cullis PR, Janoff AS (1985) Solute distributions and trapping efficencies observed in freeze-thawed multilamellar vesicles. Biochim Biophys Acta 817:193–196PubMedCrossRefGoogle Scholar
  21. 21.
    Menei P, Benoit JP (2003) Implantable drug-releasing biodegradable microspheres for local treatment of brain glioma. Acta Neurochir Suppl 88:51–55PubMedGoogle Scholar
  22. 22.
    Navon G (1993) Complete elimination of the extracellular 23Na NMR signal in triple quantum filtered spectra of rat hearts in the presence of shift reagents. Magn Reson Med 30:503–506PubMedCrossRefGoogle Scholar
  23. 23.
    Orenberg EK (2004) Intralesional chemotherapy with injectable collagen gel formulations. In: Brown DM (eds) Drug delivery systems in cancer therapy. Humana Press, Totowa, pp 229–246Google Scholar
  24. 24.
    Parker WB, Allan PW, Hassan AE, Secrist JA III, Sorscher EJ, Waud WR (2003) Antitumor activity of 2-fluoro-2′-deoxyadenosine against tumors that express Escherichia coli purine nucleoside phosphorylase. Cancer Gene Ther 10:23–29PubMedCrossRefGoogle Scholar
  25. 25.
    Port R (2003) SOP 14: population pharmacokinetic analysis. In: Gastl G, Berdel W, Edler L, Jaehde U, Port R, Mross K, Scheulen M, Sindermann H, Dittrich C (eds) Standard operating procedures for clinical trials of the CESAR Central European Society for Anticancer Drug Research—EWIV. Onkologie 26(Suppl 6):60–66. URL:
  26. 26.
    Port RE (1996) Estimating individual pretreatment levels of a pharmacologic response variable. Population Approach Group in Europe, Sandwich UK, June 14–15. URL:
  27. 27.
    Port RE (2003) Populations-Pharmakokinetik und individuelle Dosisanpassung. In: Zeller WJ, zur Hausen H (eds) Onkologie—Grundlagen, Diagnostik, Therapie, Entwicklungen (16. Ergänzungslieferung). ecomed-Verlag, Landsberg, pp IV-8.1, 1–13 URL:\_IV-8.1\_Port.pdf
  28. 28.
    Port RE, Ding RW, Fies T, Schaerer K (1998) Predicting the time course of haemoglobin in children treated with erythropoietin for renal anaemia. Br J Clin Pharmacol 46:461–466PubMedCrossRefGoogle Scholar
  29. 29.
    Port RE, Hanisch F, Becker M, Bachert P, Zeller J (1999) Local disposition kinetics of floxuridine after intratumoral and subcutaneous injection as monitored by 19F-nuclear magnetic resonance spectroscopy in vivo. Cancer Chemother Pharmacol 44:65–73PubMedCrossRefGoogle Scholar
  30. 30.
    Port RE, Knopp MV, Brix G (2001) Dynamic contrast-enhanced MRI using Gd-DTPA: interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors. Magn Reson Med 45:1030–1038PubMedCrossRefGoogle Scholar
  31. 31.
    R Development Core Team (2004) R: a language and environment for statistical computing. R Foundation for Statistical Computing. ISBN 3-900051-00-3. URL:
  32. 32.
    Rasband W, National Institute of Mental Health, Bethesda (2004). ImageJ. Image processing and analysis in java. URL:
  33. 33.
    Rowland IJ, Maxwell RJ, Baluch S, Ojugo ASE, Griffiths JR, Leach MO (1993) Differential distribution of 5-fluorouracil and α-fluoro-β-alanine in both rat liver and tumour. In: Proceedings of the society of magnetic resonance in medicine (SMRM), vol 1, New York, pp 244Google Scholar
  34. 34.
    Rowland M, Tozer TN (1995) Clinical pharmacokinetics: concepts and applications, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  35. 35.
    Roy R, Kim S (1991) Multivesicular liposomes containing bleomycin for subcutaneous administration. Cancer Chemother Pharmacol 28:105–108PubMedCrossRefGoogle Scholar
  36. 36.
    Rubesova E, Berger F, Wendland MF, Hong K, Stevens KJ, Gooding CA, Lang P (2002) Gd-labeled liposomes for monitoring liposome-encapsulated chemotherapy. Acad Radiol 9(Suppl 2):S525–S527PubMedCrossRefGoogle Scholar
  37. 37.
    Saito R, Bringas JR, McKnight TR, Wendland MF, Mamot C, Drummond DC, Kirpotin DB, Park JW, Berger MS, Bankiewicz KS (2004) Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res 64:2572–2579PubMedCrossRefGoogle Scholar
  38. 38.
    Sheiner LB (1985) Analysis of pharmacokinetic data using parametric models. II. Point estimates of an individual’s parameters. J Pharmacokin Biopharm 13:515–540CrossRefGoogle Scholar
  39. 39.
    Sheiner LB, Ludden TM (1992) Population pharmacokinetics/dynamics. Annu Rev Pharmacol Toxicol 32:185–209PubMedGoogle Scholar
  40. 40.
    Sheiner LB, Rosenberg B, Marathe VV (1977) Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharmacokin Biopharm 5:445–479CrossRefGoogle Scholar
  41. 41.
    Viglianti BL, Abraham SA, Michelich CR, Yarmolenko PS, MacFall JR, Bally MB, Dewhirst MW (2004) In vivo monitoring of tissue pharmacokinetics of liposome/drug using MRI: illustration of targeted delivery. Magn Reson Med 51:1153–1162PubMedCrossRefGoogle Scholar
  42. 42.
    Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, Kracht L, Coenen HH, Sturm V, Wienhard K, Heiss WD, Jacobs AH (2002) Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 54:479–487CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Ruediger E. Port
    • 1
  • Christian Schuster
    • 2
  • Christa R. Port
    • 1
  • Peter Bachert
    • 2
  1. 1.Unit Pharmacology of Cancer TreatmentGerman Cancer Research CenterHeidelbergGermany
  2. 2.Department of Medical Physics in RadiologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations