Cancer Chemotherapy and Pharmacology

, Volume 58, Issue 2, pp 245–255 | Cite as

Preferential extravasation and accumulation of liposomal vincristine in tumor comparing to normal tissue enhances antitumor activity

  • Siqing Shan
  • Clay Flowers
  • Cathy D. Peltz
  • Heather Sweet
  • Norbert Maurer
  • Eun-Joo Gina Kwon
  • Ave Krol
  • Fan Yuan
  • Mark W. DewhirstEmail author
Original Article


To quantitatively evaluate the extravasation, accumulation and selectivity to tumor tissues of liposomal vincristine (LV), dorsal skin-fold window chambers on athymic mice with or without LX-1, a human small cell lung cancer, xenograft implants and fluorescent intravital microscopy imaging were used. In vitro studies show that minimal loss of fluorescence marker DiI from liposomes occurs after 4 days of inoculation in murine plasma, and the release profiles of DiI-LV and LV were essentially the same with approximately 40% of the encapsulated vincristine sulfate (VCR) released after 26 h. Significantly faster extravasation of DiI-LV from tumor vessels was shown compared to non-tumor tissue after single dose i.v. administration. The relative interstitial amounts at 60 min (RIA60) for tumor and non-tumor tissues were 0.837±0.314 and 0.012±0.091, respectively (P=0.01). DiI-LV accumulation was significantly higher in tumor than in normal tissue, which continued beyond 48 h. Both DiI-LV and LV showed significant antitumor effects in window chambers and in flank tumors, compared with controls and VLS alone. The preferential extravasation of DiI-LV from tumor vasculature as well as its differential retention in tumor tissue provides the basis for the enhancement in antitumor activity of LV over VCR.


Vincristine Liposome Fluorescence microscopy Extravasation Drug release Dorsal skin fold window chamber LX-1 human small cell lung cancer 



The authors thank Ms. Dai Wang for the help in image analysis.


  1. 1.
    Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276PubMedCrossRefGoogle Scholar
  2. 2.
    Rahman A, More N, Schein PS (1982) Doxorubicin-induced chronic cardiotoxicity and its protection by liposomal administration. Cancer Res 42:1817–1825PubMedGoogle Scholar
  3. 3.
    Berry G, Billingham M, Alderman E, Torti F, Lum B, DuMond Cea (1996) Reduced cardiotoxicity of Doxil (pegylated liposomal doxorubicin) in aids Kaposi’s sarcoma patients compared to a matched control of cancer patients given doxorubicin. Proc Am Soc Clin Oncol 5:A843Google Scholar
  4. 4.
    Muggia F, Hainsworth J, Jeffers S, Miller P, Groshen S, Tan M, et al (1997) Phase ii study of liposomal doxorubicin in refractory ovarian cancer: antitumor activity and toxicity modification by liposomal encapsulation. J Clin Oncol 15:987–993PubMedGoogle Scholar
  5. 5.
    Allen TM, Newman MS, Woodle MC, Mayhew E, Uster PS (1995) Pharmacokinetics and anti-tumor activity of vincristine encapsulated in sterically stabilized liposomes. Int J Cancer 62:199–204PubMedCrossRefGoogle Scholar
  6. 6.
    Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303:1818–1822PubMedCrossRefGoogle Scholar
  7. 7.
    Vaage J, Barberá-Guillem E, Abra R, Huang A, Working P (1994) Tissue distribution and therapeutic effect of intravenous free or encapsulated liposomal doxorubicin on human prostate carcinoma xenografts. Cancer 73:1478–1484PubMedCrossRefGoogle Scholar
  8. 8.
    Vaage J, Donovan D, Loftus T, Uster P, Working P (1995) Prophylaxis and therapy of mouse mammary carcinomas with doxorubicin and vincristine encapsulated in sterically stabilized liposomes. Eur J Cancer 31A:367–372PubMedCrossRefGoogle Scholar
  9. 9.
    Abraham SA, Waterhouse DN, Mayer LD, Cullis PR, Madden TD, Bally MB (2005) The liposomal formulation of doxorubicin. Methods in Enzymol 391:71–97CrossRefGoogle Scholar
  10. 10.
    Gidding CEM, Kellie SJ, Kamps WA, De Graaf SSN (1999) Vincristine revisited. Crit Rev Oncol Hematol 29:267–287PubMedCrossRefGoogle Scholar
  11. 11.
    Jackson DVJ, Paschold EH, Spurr CL, Muss HB, Richards FI, Cooper MR, White DR, Stuartt JJ, Hopkins JO, Rich RJ, Wells HB (1984) Treatment of advanced non-Hodgkin’s lymphoma with vincristine infusion. Cancer 53:2601–2606PubMedCrossRefGoogle Scholar
  12. 12.
    Webb MS, Logan P, Kanter PM, St-Onge G, Gelmon K, Harasym T, Mayer LD, Bally MB (1998) Preclinical pharmacology, toxicology and efficacy of sphingomyelin/cholesterol liposomal vincristine for therapeutic treatment of cancer. Cancer Chemother Pharmacol 42:461–470PubMedCrossRefGoogle Scholar
  13. 13.
    Krishna R, Webb MS, St Onge G, Mayer LD (2001) Liposomal and nonliposomal drug pharmacokinetics after administration of liposome-encapsulated vincristine and their contribution to drug tissue distribution properties. J Pharmacol Exp Ther 298:1206–1212PubMedGoogle Scholar
  14. 14.
    Mayer LD, Bally MB, Loughrey H, Masin D, Cullis PR (1990) Liposomal vincristine preparations which exhibit decreased drug toxicity and increased activity against murine l1210 and p388 tumors. Cancer Res 50:575–579PubMedGoogle Scholar
  15. 15.
    Mayer LD, Nayar R, Thies RL, Boman NL, Cullis PR, Bally MB (1993) Identification of vesicle properties that enhance the antitumor activity of liposomal vincristine against murine l1210 leukemia. Cancer Chemother Pharmacol 33:17–24PubMedCrossRefGoogle Scholar
  16. 16.
    Mayer LD, Masin D, Nayar R, Boman NL, Bally MB (1995) Pharmacology of liposomal vincristine in mice bearing l1210 ascitic and b16/bl6 solid tumours. Br J Cancer 71:482–488PubMedGoogle Scholar
  17. 17.
    Mayer LD, St-Onge G (1995) Determination of free and liposome-associated doxorubicin and vincristine levels in plasma under equilibrium conditions employing ultrafiltration techniques. Anal Biochem 232:149–157PubMedCrossRefGoogle Scholar
  18. 18.
    Webb MS, Harasym TO, Masin D, Bally MB, Mayer LD (1995) Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumor models. Br J Cancer 72:896–904PubMedGoogle Scholar
  19. 19.
    Webb MS, Saxon D, Wong FM, Lim HJ, Wang Z, Bally MB, Choi LS, Cullis PR, Mayer LD (1998) Comparison of different hydrophobic anchors conjugated to poly (ethylene glycol): effects on the pharmacokinetics of liposomal vincristine. Biochem Biophys Acta 1372:272–282PubMedCrossRefGoogle Scholar
  20. 20.
    Leonetti C, Scarsella M, Semple SC, Molinari A, D’Angelo C, Stoppacciaro A, Biroccio A, Zupi G (2004) In vivo administration of liposomal vincristine sensitizes drug-resistant human solid tumors. Int J Cancer 110:767–774PubMedCrossRefGoogle Scholar
  21. 21.
    Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400Google Scholar
  22. 22.
    Fenske DB, Maurer N, Cullis PR (2003) Liposomes: a practical approach. In: Torchilin VP, Weissig V (eds) Oxford University Press, Oxford, New York, pp. 167–191Google Scholar
  23. 23.
    Venditti JM, Wesley RA, Plowman J (1984) Current NCI preclinical antitumor screening in vivo: results of tumor panel screening, 1976–1982, and future directions. Adv Pharmacol Chemother 20:1–20PubMedCrossRefGoogle Scholar
  24. 24.
    Tashiro T, Inaba M, Kobayashi T, Sakurai Y, Maruo K, Ohnishi Y, Ueyama Y, Nomura T (1989) Responsiveness of human lung cancer/nude mouse to antitumor agents in a model using clinically equivalent doses. Cancer Chemother Pharmacol 24:187–192PubMedCrossRefGoogle Scholar
  25. 25.
    Huang Q, Shan S, Braun RD, Lanzen J, Anyrhambatla G, Kong G, Borelli M, Corry P, Dewhirst MW, Li CY (1999) Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol 17:1033–1035PubMedCrossRefGoogle Scholar
  26. 26.
    Shan S, Lockhart AC, Saito WY, Knapp AM, Laderoute KR, Dewhirst MW (2001) The novel tubulin-binding drug bto-956 inhibits r3230ac mammary carcinoma growth and angiogenesis in Fischer 344 rats. Clin Cancer Res 7:2590–2596PubMedGoogle Scholar
  27. 27.
    Wu NZ, Klitzman B, Rosner GL, Needham D, Dewhirst MW (1993) Measurement of material extravasation in microvascular networks using fluorescence video-microscopy. Microvasc Res 46:231–253PubMedCrossRefGoogle Scholar
  28. 28.
    Kong G, Braun RD, Dewhirst MW (2000) Hyperthermia enables tumor-specific nanoparticle delivery: effect of particle size. Cancer Res 60:4440–4445PubMedGoogle Scholar
  29. 29.
    Krol A, Maresca J, Dewhirst MW, Yuan F (1999) Available volume fraction of macromolecules in the extravascular space of a fibrosarcoma: implications for drug delivery. Cancer Res 59:4136–4141PubMedGoogle Scholar
  30. 30.
    Yuan F, Krol A, Tong S (2001) Available space and extracellular transport of macromolecules: effects of pore size and connectedness. Ann Biomed Eng 29:1150–1158PubMedCrossRefGoogle Scholar
  31. 31.
    Krol A, Dewhirst MW, Yuan F (2003) Effects of cell damage and glycosaminoglycan degradation on available extravascular space of different dextrans in a rat fibrosarcoma. Int J Hyperthermia 19:154–164PubMedCrossRefGoogle Scholar
  32. 32.
    Siemann DW, Chaplin D, Horsman MR (2004) Vascular-targeting therapies for treatment of malignant disease. Cancer 100:2491–2499PubMedCrossRefGoogle Scholar
  33. 33.
    Vacca A, Iurlaro M, Ribatti D, Minischetti M, Nico B, Ria R, Pellegrino A, Dammacco F (1999) Antiangiogenesis is produced by nontoxic doses of vinblastine. Blood 94:4143–4155PubMedGoogle Scholar
  34. 34.
    Hill SA, Lonergan SJ, Denekamp J, Chaplin DJ (1993) Vinca alkaloids: Anti-vascular effects in a murine tumor. Eur J Cancer 29:1320–1324CrossRefGoogle Scholar
  35. 35.
    Schirner M, Hoffmann J, Menrad A, Schneider M (1998) Antiangiogenic chemotherapeutic agents: characterization in comparison to their tumor growth inhibition in human renal cell carcinoma models. Clin Cancer Res 4:1331–1336PubMedGoogle Scholar
  36. 36.
    Klauber N, Parangi S, Flynn E, Hamel E, D’Amato RJ (1997) Inhibition of angiogenesis and breast cancer in mice by the microtubule inhibitors 2-methoxyestradiol and Taxol. Cancer Res 57:81–86PubMedGoogle Scholar
  37. 37.
    O’Leary JJ, Shapiro RL, Ren CJ, Chuang N, Cohen HW, Potmesil M (1999) Antiangiogenic effects of camptothecin analogues 9-amino-20(s)-camptothecin, topotecan, and cpt-11 studied in the mouse cornea model. Clin Cancer Res 5:181–187PubMedGoogle Scholar
  38. 38.
    Avramis IA, Kwock R, Avramis VI (2001) Taxotere and vincristine inhibit the secretion of the angiogenesis inducing vascular endothelial growth factor (VEGF) by wild-type and drug-resistant human leukemia t-cell lines, Anticancer Res 21:2281–2286PubMedGoogle Scholar
  39. 39.
    Moehler T, Neben K, Ho A, Goldschmidt H (2001) Angiogenesis in hematologic malignancies. Ann Hemotol 80:695–705CrossRefGoogle Scholar
  40. 40.
    Orpana A, Salven P (2002) Angiogenic and lymphangiogenic molecules in hematological malignancies. Leuk Lymphoma 43:219–224PubMedCrossRefGoogle Scholar
  41. 41.
    Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257PubMedCrossRefGoogle Scholar
  42. 42.
    Salven P (2001) Angiogenesis in lymphoproliferative disorders. Acta Haematol 106:184–189PubMedCrossRefGoogle Scholar
  43. 43.
    Vacca A, Ribatti D, Roncali L, Dammacco F (1995) Angiogenesis in b cell lymphoproliferative diseases. Biological and clinical studies. Leuk Lymphoma 20:27–38CrossRefGoogle Scholar
  44. 44.
    Ribatti D, Vacca A, Nico B, Fanelli M, Roncali L, Dammacco F (1996) Angiogenesis spectrum in the stroma of b-cell non-Hodgkin’s lymphomas. An immunohistochemical and ultrastructural study. Eur J Haematol 56:45–53Google Scholar
  45. 45.
    Ribatti D, Vacca A, Marzullo A, Nico B, Ria R, Roncali L, Dammacco F (2000) Angiogenesis and mast cell density with tryptase activity increase simultaneously with pathological progression in b-cell non-Hodgkin’s lymphomas. Int J Cancer 85:171–175PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Siqing Shan
    • 1
  • Clay Flowers
    • 3
  • Cathy D. Peltz
    • 1
  • Heather Sweet
    • 3
  • Norbert Maurer
    • 3
  • Eun-Joo Gina Kwon
    • 3
  • Ave Krol
    • 2
  • Fan Yuan
    • 2
  • Mark W. Dewhirst
    • 1
    Email author
  1. 1.Department of Radiation OncologyDuke University Medical CenterDurhamUSA
  2. 2.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  3. 3.Inex Pharmaceuticals CorporationBurnabyCanada

Personalised recommendations