Cancer Chemotherapy and Pharmacology

, Volume 56, Issue 2, pp 161–172 | Cite as

Single nucleotide polymorphisms modify the transporter activity of ABCG2

  • Kuniaki Morisaki
  • Robert W. Robey
  • Csilla Özvegy-Laczka
  • Yasumasa Honjo
  • Orsolya Polgar
  • Kenneth Steadman
  • Balázs Sarkadi
  • Susan E. Bates
Original Article


Single nucleotide polymorphism (SNP) analyses of the ABCG2 gene have revealed three nonsynonymous SNPs resulting in the amino acid changes at V12M, Q141K and D620N. To determine whether the SNPs have an effect on drug transport, human embryonic kidney cells (HEK-293) were stably transfected with full length ABCG2 coding wild-type or SNP variants of ABCG2. In 4-day cytotoxicity assays with mitoxantrone, topotecan, SN-38 or diflomotecan, cells transfected with wild-type R482 ABCG2 showed IC50 values up to 1.2-fold to 5-fold higher than cells expressing comparable levels of Q141K ABCG2, suggesting that the Q141K SNP affects drug transport. FTC-inhibitable mitoxantrone efflux normalized to ABCG2 surface expression as assayed by the anti-ABCG2 antibody 5D3 was significantly lower in cells transfected with Q141K ABCG2 than in those transfected with wild-type R482 ABCG2 (P=0.0048). Values for V12M and D620N ABCG2 were comparable to those for wild-type R482 ABCG2. The vanadate-sensitive ATPase activity of ABCG2 was assayed in Sf9 insect cells infected with wild-type or SNP variants of ABCG2. Basal ATPase activity in cells transfected with Q141K ABCG2 was 1.8-fold lower than in cells transfected with wild-type ABCG2, but was comparable among cells expressing wild-type, V12M or D620N ABCG2. Confocal studies of ABCG2 localization revealed higher intracellular staining in the Q141K transfectants than in cells transfected with wild-type or V12M ABCG2. Decreased transport of Hoechst 33342 was observed in Sf9 cells expressing V12M ABCG2; however, this was not true in HEK-293 cells expressing V12M ABCG2. These results suggest that the Q141K SNP affects the transport efficiency of ABCG2 and may result in altered pharmacokinetics or drug-resistance profiles in clinical oncology.


Nucleotides Polymorphism ABCG2 



We are very grateful to Gabriella Köblös for helping with the ATPase activity measurements and for Dr. Barry N. Elkind and Dr. László Homolya for help with the confocal studies. We also appreciate the technical assistance of Tim Nadjem.


  1. 1.
    Allen JD, Brinkhuis RF, van Deemter L, Wijnholds J, Schinkel AH (2000) Extensive contribution of the multidrug transporters P-glycoprotein and Mrp1 to basal drug resistance. Cancer Res 60:5761–5766Google Scholar
  2. 2.
    Allen JD, Jackson SC, Schinkel AH (2002) A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for doxorubicin resistance. Cancer Res 62:2294–2299Google Scholar
  3. 3.
    Allikmets R, Schriml LM, Hutchinson A, Romano-Spica V, Dean M (1998) A human placenta-specific ATP-binding cassette gene (ABCP) on chromosome 4q22 that is involved in multidrug resistance. Cancer Res 58:5337–5339Google Scholar
  4. 4.
    Backstrom G, Taipalensuu J, Melhus H, Brandstrom H, Svensson AC, Artursson P, Kindmark A (2003) Genetic variation in the ATP-binding cassette transporter gene ABCG2 (BCRP) in a Swedish population. Eur J Pharm Sci 18:359–364Google Scholar
  5. 5.
    Bates SE, Medina-Perez WY, Kohlhagen G, Antony S, Nadjem T, Robey RW, Pommier Y (2004) ABCG2 mediates differential resistance to SN-38 and homocamptothecins. J Pharmacol Exp Ther 310:836–842Google Scholar
  6. 6.
    Berge KE, Tian H, Graf GA, Yu L, Grishin NV, Schultz J, Kwiterovich P, Shan B, Barnes R, Hobbs HH (2000) Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 290:1771–1775Google Scholar
  7. 7.
    Berge KE, von Bergmann K, Lutjohann D, Guerra R, Grundy SM, Hobbs HH, Cohen JC (2002) Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8. J Lipid Res 43:486–494Google Scholar
  8. 8.
    Borst P, Evers R, Kool M, Wijnholds J (1999) The multidrug resistance protein family. Biochim Biophys Acta 1461:347–357Google Scholar
  9. 9.
    Chen Y-N, Mickley LA, Schwartz AM, Acton EM, Hwang J, Fojo AT (1990) Characterization of Adriamycin-resistant human breast cancer cells which display overexpression of a novel resistance-related membrane protein. J Biol Chem 265:10073–10080Google Scholar
  10. 10.
    Chen ZS, Robey RW, Belinsky MG, Shchaveleva I, Ren XQ, Sugimoto Y, Ross DD, Bates SE, Kruh GD (2003) Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-d-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 63:4048–4054Google Scholar
  11. 11.
    Cisternino S, Mercier C, Bourasset F, Roux F, Scherrmann JM (2004) Expression, up-regulation, and transport activity of the multidrug-resistance protein Abcg2 at the mouse blood-brain barrier. Cancer Res 64:3296–3301Google Scholar
  12. 12.
    Cooray HC, Blackmore CG, Maskell L, Barrand MA (2002) Localisation of breast cancer resistance protein in microvessel endothelium of human brain. Neuroreport 13:2059–2063Google Scholar
  13. 13.
    Doyle LA, Yang W, Abruzzo LV, Krogmann T, Gao Y, Rishi AK, Ross DD (1998) A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 95:15665–15670Google Scholar
  14. 14.
    Drescher S, Schaeffeler E, Hitzl M, Hofmann U, Schwab M, Brinkmann U, Eichelbaum M, Fromm MF (2002) MDR1 gene polymorphisms and disposition of the P-glycoprotein substrate fexofenadine. Br J Clin Pharmacol 53:526–534Google Scholar
  15. 15.
    Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2:48–58Google Scholar
  16. 16.
    Hitzl M, Drescher S, van der Kuip H, Schaffeler E, Fischer J, Schwab M, Eichelbaum M, Fromm MF (2001) The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics 11:293–298Google Scholar
  17. 17.
    Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmoller J, Johne A, Cascorbi I, Gerloff T, Roots I, Eichelbaum M, Brinkmann U (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A 97:3473–3478Google Scholar
  18. 18.
    Honjo Y, Hrycyna CA, Yan QW, Medina-Perez WY, Robey RW, van de Laar A, Litman T, Dean M, Bates SE (2001) Acquired mutations in the MXR/BCRP/ABCP gene alter substrate specificity in MXR/BCRP/ABCP-overexpressing cells. Cancer Res 61:6635–6639Google Scholar
  19. 19.
    Honjo Y, Morisaki K, Huff LM, Robey RW, Hung J, Dean M, Bates SE (2002) Single-nucleotide polymorphism (SNP) analysis in the ABC half-transporter ABCG2 (MXR/BCRP/ABCP1). Cancer Biol Ther 1:696–702Google Scholar
  20. 20.
    Imai Y, Nakane M, Kage K, Tsukahara S, Ishikawa E, Tsuruo T, Miki Y, Sugimoto Y (2002) C421A polymorphism in the human breast cancer resistance protein gene is associated with low expression of Q141K protein and low-level drug resistance. Mol Cancer Ther 1:611–616Google Scholar
  21. 21.
    Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92:1651–1656Google Scholar
  22. 22.
    Kerb R, Hoffmeyer S, Brinkmann U (2001) ABC drug transporters: hereditary polymorphisms and pharmacological impact in MDR1, MRP1 and MRP2. Pharmacogenomics 2:51–64Google Scholar
  23. 23.
    Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28Google Scholar
  24. 24.
    Kruijtzer CM, Beijnen JH, Rosing H, Ten Bokkel Huinink WW, Schot M, Jewell RC, Paul EM, Schellens JH (2002) Increased oral bioavailability of topotecan in combination with the breast cancer resistance protein and P-glycoprotein inhibitor GF120918. J Clin Oncol 20:2943–2950Google Scholar
  25. 25.
    Lee MH, Lu K, Hazard S, Yu H, Shulenin S, Hidaka H, Kojima H, Allikmets R, Sakuma N, Pegoraro R, Srivastava AK, Salen G, Dean M, Patel SB (2001) Identification of a gene, ABCG5, important in the regulation of dietary cholesterol absorption. Nat Genet 27:79–83Google Scholar
  26. 26.
    Litman T, Jensen U, Hansen A, Covitz K, Zhan Z, Fetsch P, Abati A, Hansen P, Horn T, Skovsgaard T, Bates S (2002) Use of peptide antibodies to probe for the mitoxantrone resistance-associated protein MXR/BCRP/ABCP/ABCG2. Biochim Biophys Acta 1565:6–16Google Scholar
  27. 28.
    Maliepaard M, van Gastelen MA, de Jong LA, Pluim D, van Waardenburg RC, Ruevekamp-Helmers MC, Floot BG, Schellens JH (1999) Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 59:4559–4563Google Scholar
  28. 27.
    Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, van De Vijver MJ, Scheper RJ, Schellens JH (2001) Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res 61:3458–3464Google Scholar
  29. 29.
    Miyake K, Mickley L, Litman T, Zhan Z, Robey R, Cristensen B, Brangi M, Greenberger L, Dean M, Fojo T, Bates SE (1999) Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells: demonstration of homology to ABC transport genes. Cancer Res 59:8–13Google Scholar
  30. 30.
    Mizuarai S, Aozasa N, Kotani H (2004) Single nucleotide polymorphisms result in impaired membrane localization and reduced ATPase activity in multidrug transporter ABCG2. Int J Cancer 109:238–246Google Scholar
  31. 31.
    Muller M, Bakos E, Welker E, Varadi A, Germann UA, Gottesman MM, Morse BS, Roninson IB, Sarkadi B (1996) Altered drug-stimulated ATPase activity in mutants of the human multidrug resistance protein. J Biol Chem 271:1877–1883Google Scholar
  32. 32.
    Nakatomi K, Yoshikawa M, Oka M, Ikegami Y, Hayasaka S, Sano K, Shiozawa K, Kawabata S, Soda H, Ishikawa T, Tanabe S, Kohno S (2001) Transport of 7-ethyl-10-hydroxycamptothecin (SN-38) by breast cancer resistance protein ABCG2 in human lung cancer cells. Biochem Biophys Res Commun 288:827–832Google Scholar
  33. 33.
    Ozvegy C, Litman T, Szakacs G, Nagy Z, Bates S, Varadi A, Sarkadi B (2001) Functional characterization of the human multidrug transporter, ABCG2, expressed in insect cells. Biochem Biophys Res Commun 285:111–117Google Scholar
  34. 34.
    Ozvegy C, Varadi A, Sarkadi B (2002) Characterization of drug transport, ATP hydrolysis and nucleotide trapping by the human ABCG2 multidrug transporter: modulation of substrate specificity by a point mutation. J Biol Chem 277:47980–47990Google Scholar
  35. 35.
    Rabindran SK, He H, Singh M, Brown E, Collins KI, Annable T, Greenberger LM (1998) Reversal of a novel multidrug resistance mechanism in human colon carcinoma cells by fumitremorgin C. Cancer Res 58:5850–5858Google Scholar
  36. 36.
    Rabindran SK, Ross DD, Doyle LA, Yang W, Greenberger LM (2000) Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein. Cancer Res 60:47–50Google Scholar
  37. 38.
    Robey RW, Honjo Y, van de Laar A, Miyake K, Regis JT, Litman T, Bates SE (2001) A functional assay for detection of the mitoxantrone resistance protein, MXR (ABCG2). Biochim Biophys Acta 1512:171–182Google Scholar
  38. 37.
    Robey RW, Honjo Y, Morisaki K, Nadjem TA, Runge S, Risbood M, Poruchynsky MS, Bates SE (2003) Mutations at amino acid 482 in the ABCG2 gene affect substrate and antagonist specificity. Br J Cancer 89:1971–1978Google Scholar
  39. 39.
    Robey RW, Medina-Perez WY, Nishiyama K, Lahusen T, Miyake K, Litman T, Senderowicz AM, Ross DD, Bates SE (2001) Overexpression of the ATP-binding cassette half-transporter, ABCG2 (MXR/BCRP/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 7:145–152Google Scholar
  40. 40.
    Ross DD, Yang W, Abruzzo LV, Dalton WS, Schneider E, Lage H, Dietel M, Greenberger L, Cole SP, Doyle LA (1999) Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst 91:429–433Google Scholar
  41. 41.
    Sakaeda T, Nakamura T, Okumura K (2003) Pharmacogenetics of MDR1 and its impact on the pharmacokinetics and pharmacodynamics of drugs. Pharmacogenomics 4:397–410Google Scholar
  42. 42.
    Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512Google Scholar
  43. 43.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112Google Scholar
  44. 44.
    Sparreboom A, Gelderblom H, Marsh S, Ahluwalia R, Obach R, Principe P, Twelves C, Verweij J, McLeod HL (2004) Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype. Clin Pharmacol Ther 76:38–44Google Scholar
  45. 45.
    van Loevezijn A, Allen JD, Schinkel AH, Koomen GJ (2001) Inhibition of BCRP-mediated drug efflux by fumitremorgin-type indolyl diketopiperazines. Bioorg Med Chem Lett 11:29–32Google Scholar
  46. 46.
    Volk EL, Farley KM, Wu Y, Li F, Robey RW, Schneider E (2002) Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 62:5035–5040Google Scholar
  47. 47.
    Wang X, Furukawa T, Nitanda T, Okamoto M, Sugimoto Y, Akiyama S, Baba M (2003) Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 63:65–72Google Scholar
  48. 48.
    Weggemans RM, Zock PL, Tai ES, Ordovas JM, Molhuizen HO, Katan MB (2002) ATP binding cassette G5 C1950G polymorphism may affect blood cholesterol concentrations in humans. Clin Genet 62:226–229Google Scholar
  49. 49.
    Woodahl EL, Ho RJ (2004) The role of MDR1 genetic polymorphisms in interindividual variability in P-glycoprotein expression and function. Curr Drug Metab 5:11–19Google Scholar
  50. 50.
    Zamber CP, Lamba JK, Yasuda K, Farnum J, Thummel K, Schuetz JD, Schuetz EG (2003) Natural allelic variants of breast cancer resistance protein (BCRP) and their relationship to BCRP expression in human intestine. Pharmacogenetics 13:19–28Google Scholar
  51. 51.
    Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Kuniaki Morisaki
    • 1
  • Robert W. Robey
    • 1
  • Csilla Özvegy-Laczka
    • 2
  • Yasumasa Honjo
    • 1
  • Orsolya Polgar
    • 1
  • Kenneth Steadman
    • 1
  • Balázs Sarkadi
    • 2
  • Susan E. Bates
    • 1
  1. 1.Cancer Therapeutics Branch, Center for Cancer Research, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.National Medical Center, Institute of Hematology and Immunology, Membrane Research GroupHungarian Academy of SciencesBudapestHungary

Personalised recommendations