Cancer Chemotherapy and Pharmacology

, Volume 53, Issue 6, pp 519–526 | Cite as

Mutant p53 expression enhances drug resistance in a hepatocellular carcinoma cell line

Original Article

Abstract

Chemoresistance is a major problem in the treatment of hepatocellular carcinoma. Certain p53 mutants may enhance drug resistance in cancer cells. To determine whether two frequently occurring p53 mutants, R248Q and R273C, would increase the drug resistance of liver cancer cells, stable cell lines expressing these specific p53 mutants were established by transfecting the p53-null Hep3B cells with mutant p53 expression vectors, and then treating them with the anticancer drugs doxorubicin and paclitaxel. The cells expressing the p53 mutant, R248Q, but not R273C, displayed cross-resistance to both drugs, in contrast to the control cells expressing the vector alone. Moreover, both the expression and the activity of the multiple drug resistance gene product, P-glycoprotein, were elevated in p53 mutant R248Q-expressing cells. Reduced uptake of doxorubicin was also observed in the R248Q-expressing cells. These results suggest that expression of the p53 mutant, R248Q, in liver cancer cells may enhance their drug resistance and that upregulation of P-glycoprotein activity may contribute to this protective effect.

Keywords

p53 mutation P-glycoprotein Doxorubicin Drug resistance Liver cancer 

References

  1. 1.
    Pisani P, Parkin DM, Ferlay J (1993) Estimates of the world-wide mortality from eighteen major cancers in 1985. Implications for prevention and projections of future burden. Int J Cancer 55:891–903PubMedGoogle Scholar
  2. 2.
    Ince N, Wands JR (1999) The increasing incidence of hepatocellular carcinoma. N Engl J Med 340:782–798CrossRefGoogle Scholar
  3. 3.
    Chen MF, Hwang TL, Jeng LB, Jan YY, Wang CS, Chou FF (1989) Hepatic resection in 120 patients with hepatocellular carcinoma. Arch Surg 124:1025–1028PubMedGoogle Scholar
  4. 4.
    Leung WT, Johnson PJ (2001) Systemic therapy for hepatocellular carcinoma, Semin Oncol 28:514–520Google Scholar
  5. 5.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741CrossRefPubMedGoogle Scholar
  6. 6.
    Lee TKW, Lau TCM, Ng IOL (2002) Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother Pharmacol 49:78–86CrossRefPubMedGoogle Scholar
  7. 7.
    Borbe R, Rieger J, Weller M (1999) Failure of taxol-based combination chemotherapy for malignant glioma cannot be overcome by G2/M checkpoint abrogators or altering the p53 status. Cancer Chemother Pharmacol 44:217–227CrossRefPubMedGoogle Scholar
  8. 8.
    Bush JA, Li G (2002) Cancer chemoresistance: the relationship between p53 and multidrug transporters. Int J Cancer 98:323–330CrossRefPubMedGoogle Scholar
  9. 9.
    Roninson IB, Chin JE, Choi KG, Gros P, Housman DE, Fojo A, Shen DW, Gottesman MM, Pastan I (1986) Isolation of human mdr DNA sequences amplified in multidrug-resistant KB carcinoma cells. Proc Natl Acad Sci U S A 83:4538–4542PubMedGoogle Scholar
  10. 10.
    Yusa K, Tsurio T (1989) Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 49:5002–5006PubMedGoogle Scholar
  11. 11.
    Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:111–116CrossRefGoogle Scholar
  12. 12.
    Levine AV (1997) p53, the cellular gatekeeper for growth and division. Cell 88:3323–3331Google Scholar
  13. 13.
    Cadwell C, Zambetti GP (2001) The effects of wild-type p53 tumor suppressor activity and mutant p53 gain-of-function on cell growth. Gene 277:15–30CrossRefPubMedGoogle Scholar
  14. 14.
    Zhan Q, Antinore MJ, Wang, XW, Carrier F, Smith ML, Harris CC, Fornace AJ (1999) Association with Cdc-2 and inhibition of Cdc2/Cylin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18:2892–2900CrossRefPubMedGoogle Scholar
  15. 15.
    Miyashita T, Krajewski S, Krajewski M, Wang HG, Lin KH, Liebermann DA, Hoffman B, Reed JC (1994) Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805PubMedGoogle Scholar
  16. 16.
    Greenblatt MS, Bennett WP, Hollstein M, Harris CC (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res 54:4855–4878PubMedGoogle Scholar
  17. 17.
    Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R, Harris CC (1996) Somatic point mutation in the p53 gene of human tumors and cell-line: updated compilation. Nucleic Acids Res 24:141–146PubMedGoogle Scholar
  18. 18.
    Blandino G, Levine A, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485PubMedGoogle Scholar
  19. 19.
    Rotter V, Sigal A (2000) Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res 60:6788–6793PubMedGoogle Scholar
  20. 20.
    Lin Y, Shi CY, Li B, Soo BH, Mohammed-Ali S, Wee A, Oon CJ, Mack POP, Chan SH (1996) Tumor suppressor p53 and Rb genes in human hepatocellular carcinoma. Ann Acad Med Singapore 25:22–30PubMedGoogle Scholar
  21. 21.
    Patel VA, Dunn MJ, Sorokin A (2002) Regulation of MDR-1 (P-glycoprotein) by cyclooxygenase-2. J Biol Chem 277:38915–38920CrossRefPubMedGoogle Scholar
  22. 22.
    Tsang WP, Chau SPY, Fung KP, Kong SK, Kwok TT (2003) Modulation of multidrug resistance-associated protein 1 (MRP1) by p53 mutant in Saos-2 cells. Cancer Chemother Pharmacol 51:161–166PubMedGoogle Scholar
  23. 23.
    Mates D, Sigal A, Stambolsky P, Milyavsky M, Weisz L, Schwartz D, Goldfinger N, Rotter V (2001) Integrity of the N-terminal transcription domain of p53 is required for mutant p53 interference with drug-induced apoptosis. EMBO J 20:4163–4172CrossRefPubMedGoogle Scholar
  24. 24.
    Aurelio OS, Kong XT, Gupta S, Stanbridge EJ (2000) P53 mutants have selective dominant-negative effects on apoptosis but not growth arrest in human cancer cell lines. Mol Cell Biol 20:770–778CrossRefPubMedGoogle Scholar
  25. 25.
    Muller M, Wider S, Bannasch D, Israeli D, Lehlbach K, Li-Weber M, Friedman SL, Galle PR, Stremmel W, Oren M, Krammer PH (1998) P53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drug. J Exp Med 11:2033–2045CrossRefGoogle Scholar
  26. 26.
    Ng IOL, Liu CL, Fan ST, Ng M (2000) Expression of P-glycoprotein in hepatocellular carcinoma: a determinant of chemotherapy response. Am J Clin Pathol 113:355–363CrossRefPubMedGoogle Scholar
  27. 27.
    Moriki T, Takahashi T, Tanioka F, Yamane T, Hara H (1995) Proliferative activity in breast carcinoma evaluated by BrdU and PCNA. Correlation with expression of p53, c-erbB-2, estrogen receptor and P-glycoprotein. Pathol Res Pract 191:1122–1132PubMedGoogle Scholar
  28. 28.
    Nguyen KT, Liu B, Ueda K, Gottesman MM, Pastan I, Chin KV (1994) Transactivation of the human multidrug resistance (MDR1) gene promoter by p53 mutants. Oncol Res 6:71–77PubMedGoogle Scholar
  29. 29.
    Sampath J, Sun D, Kidd VJ, Grenet J, Gandhi A, Shapiro LH, Wang Q, Zambetti GP, Schuetz JD (2001) Mutant p53 cooperates with ETS and selectively upregulates human MDR1 not MRP1. J Biol Chem 276:39359–39367PubMedGoogle Scholar
  30. 30.
    Strauss BE, Haas M (1995) The region 3′ to the major transcriptional start site of the MDR1 downstream promoter mediates activation by a subset of mutant p53 protein. Biochem Biophys Res Commun 217:333–340CrossRefPubMedGoogle Scholar
  31. 31.
    Goldsmith ME, Gudas JM, Schneider E, Cowan KH (1995) Wild type p53 stimulates expression from the human multidrug resistance promoter in a p53-negative cell line. J Biol Chem 270:1894–1898CrossRefPubMedGoogle Scholar
  32. 32.
    Chin KV, Ueda K, Pastan I, Gottesman MM (1992) Modulation of activity of the promoter of the human Mdr1 gene by Ras and p53. Science 255:459–462PubMedGoogle Scholar
  33. 33.
    Strauss BE, Shivakumar C, Deb SP, Deb S. Haas M (1995) The MDR1 downstream promoter contains sequence-specific binding sites for wild type p53. Biochem Biophys Res Commun 217:825–831CrossRefPubMedGoogle Scholar
  34. 34.
    Kopnin BP, Stromskaya TP, Kondratov RV, Ossovskaya VS, Pugacheva EN, Rybalkina EY, Khokhlova OA, Chumakov PM (1995) Influence of exogenous ras and p53 on P-glycoprotein function in immortalized rodent fibroblasts. Oncol Res 7:299–306PubMedGoogle Scholar
  35. 35.
    Fronza G, Inga A, Monti P, Scott G, Campomenosi P, Menichini P, Ottaggio L, Viaggi S, Burns P, Gold B, Abbondandolo A (2000) The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts. Mutat Res 462:293–301CrossRefPubMedGoogle Scholar
  36. 36.
    Flaman JM, Frebourg T, Moreau V, Charbonnier F, Martin C, Chappus P, Sappino AP, Limacher JM, Bron L, Benhattar J, Tada M, Van Meir EG, Estreicher A, Iggo RD (1995) A simple p53 functional assay for screening cell lines, blood, and tumors. Proc Natl Acad Sci U S A 92:3963–3967PubMedGoogle Scholar
  37. 37.
    Chan KT, Hsieh DPH, Lung ML (2003) In vitro aflatoxin B1-induced p53 mutation. Cancer Lett 199:1–7CrossRefPubMedGoogle Scholar
  38. 38.
    Luo D, Cheng SCS, Xie H, Xie Y (1999) Chemosensitivity of human hepatocellular carcinoma cell line QGY-7703 is related to Bcl-2 protein level. Tumor Biol 20:331–340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of BiologyThe Hong Kong University of Science and TechnologyKowloonPeople’s Republic of China

Personalised recommendations