Cancer Chemotherapy and Pharmacology

, Volume 52, Issue 1, pp 47–58 | Cite as

Arsenic trioxide induces apoptosis in cells of MOLT-4 and its daunorubicin-resistant cell line via depletion of intracellular glutathione, disruption of mitochondrial membrane potential and activation of caspase-3

Original Article



To demonstrate that arsenic trioxide (As2O3) induces apoptosis via a mitochondrial pathway in both parent T lymphoblastoid leukemia MOLT-4 cells and cells of its daunorubicin-resistant subline, MOLT-4/DNR, expressing functional P-gp.


Cell growth was measured using an MTT assay. Cell viability was determined using a dye exclusion test. Intracellular glutathione (GSH) was measured using a glutathione assay kit. Mitochondrial membrane potential (MMP) was assessed by rhodamine 123 (Rh123) staining intensity on flow cytometry. Caspase-3 activity was evaluated using a commercially available assay kit on flow cytometry. The percentage of cells undergoing apoptosis was estimated in terms of caspase+/PI cells on flow cytometry after assessment for activation of caspase-3 by adding PI.


MOLT-4 cells and MOLT-4/DNR cells were similarly sensitive to the apoptosis-inducing effect of As2O3. Buthionine sulfoxide (BSO) and ascorbic acid (AA) rendered these cells more sensitive to As2O3, whereas N-acetylcysteine (NAC) reduced this sensitivity. BSO and AA decreased, but NAC increased, the intracellular GSH contents of both MOLT-4 and MOLT-4/DNR cells. Decreasing GSH with BSO potentiated As2O3-mediated growth inhibition, disruption of MMP, activation of caspase-3 and apoptosis of cells. Clinically relevant doses of AA enhanced the anticancer effects of As2O3 via the disruption of MMP, activation of caspase-3, and induction of apoptosis. In contrast, increase GSH levels with NAC attenuated all of these As2O3-mediated actions.


The sensitivity of MOLT-4 and MOLT-4/DNR cells to As2O3 was associated with the intracellular GSH content. As2O3 induced apoptosis in parent MOLT-4 cells and MOLT-4/DNR cells expressing functional P-gp via depletion of intracellular GSH, and subsequent disruption of MMP and activation of caspase-3.


Arsenic trioxide Apoptosis Glutathione Mitochondrial membrane potential Caspase-3 


  1. 1.
    Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9:252CrossRefPubMedGoogle Scholar
  2. 2.
    Bachleitner-Hofmann T, Gisslinger B, Grumbeck E, Gisslinger H (2001) Arsenic trioxide and ascorbic acid: synergy with potential implications for the treatment of acute myeloid leukemia? Br J Haematol 112:783Google Scholar
  3. 3.
    Bijur GN, Ariza ME, Hitchcock CL, Williams MV (1997) Antimutagenic and promutagenic activity of ascorbic acid during oxidative stress. Environ Mol Mutagen 30:339CrossRefPubMedGoogle Scholar
  4. 4.
    Carambula SF, Matikainen T, Lynch MP, Flavell RA, Dias Goncalves PB, Tilly JL, Rueda BR (2002) Caspase-3 is a pivotal mediator of apoptosis during regression of the ovarian corpus luteum. Endocrinology 143:1495PubMedGoogle Scholar
  5. 5.
    Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with down regulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052PubMedGoogle Scholar
  6. 6.
    Coffey RN, Watson RW, Hegarty NJ, O'Neill A, Gibbons N, Brady HR, Fitzpatrick JM (2000) Thiol-mediated apoptosis in prostate carcinoma cells. Cancer 88:2092CrossRefPubMedGoogle Scholar
  7. 7.
    Dai J, Weinberg RS, Waxman S, Jing Y (1999) Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93:268PubMedGoogle Scholar
  8. 8.
    Davison K, Mann KK, Miller WH Jr (2002) Arsenic trioxide: mechanisms of action. Semin Hematol 39:3CrossRefGoogle Scholar
  9. 9.
    Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369PubMedGoogle Scholar
  10. 10.
    Gartenhaus RB, Prachand SN, Paniaqua M, Li Y, Gordon LI (2002) Arsenic trioxide cytotoxicity in steroid and chemotherapy-resistant myeloma cell lines: enhancement of apoptosis by manipulation of cellular redox state. Clin Cancer Res 8:566PubMedGoogle Scholar
  11. 11.
    Gianni M, Koken MH, Chelbi-Alix MK, Benoit G, Lanotte M, Chen Z, de The H (1998) Combined arsenic and retinoic acid treatment enhances differentiation and apoptosis in arsenic-resistant NB4 cells. Blood 91:4300PubMedGoogle Scholar
  12. 12.
    Grad JM, Bahlis NJ, Reis I, Oshiro MM, Dalton WS, Boise LH (2001) Ascorbic acid enhances arsenic trioxide-induced cytotoxicity in multiple myeloma cells. Blood 98:805CrossRefPubMedGoogle Scholar
  13. 13.
    Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocyteine sulfoximine). J Biol Chem 254:7558PubMedGoogle Scholar
  14. 14.
    Hu XM, Ma L, Hu NP, Wang ZF, Yang L, Li L, Wang ZX, Wang HZ, Wang N, Liu C, Liu F, Yang JM, Ma R (1999) AiLing I (As2O3) in treating 62 cases of acute promyelocytic leukemia (in Chinese). Chin J Integrat Chin West Med 19:473Google Scholar
  15. 15.
    Hu XM, Hirano T, Oka K (2003) Arsenic trioxide induces apoptosis equally to T lymphoblastoid leukemia MOLT-4 cells and P-gp expressing daunorubicin-resistant MOLT-4 cells. Cancer Chemother Pharmacol 51:119PubMedGoogle Scholar
  16. 16.
    Iguchi K, Hirano K, Ishida R (2002) Activation of caspase-3, proteolytic cleavage of DFF and no oligonucleosomal DNA fragmentation in apoptotic molt-4 cells. J Biochem (Tokyo) 131:469Google Scholar
  17. 17.
    Jia P, Chen G, Huang X, Cai X, Yang J, Wang L, Zhou Y, Shen Y, Zhou L, Yu Y, Chen S, Zhang X, Wang Z (2001) Arsenic trioxide induces multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potentials and activation of caspase-3. Chin Med J (Engl) 114:19Google Scholar
  18. 18.
    Jiang XH, Wong BC, Yuen ST, Jiang SH, Cho CH, Lai KC, Lin MC, Kung HF, Lam SK, Chun-Yu Wong B (2001) Arsenic trioxide induces apoptosis in human gastric cancer cells through up-regulation of p53 and activation of caspase-3. Int J Cancer 91:173CrossRefPubMedGoogle Scholar
  19. 19.
    Jing Y, Dai J, Chalmers-Redman RM, Tatton WG, Waxman S (1999) Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxide-dependent pathway. Blood 94:2102PubMedGoogle Scholar
  20. 20.
    Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275:33404CrossRefPubMedGoogle Scholar
  21. 21.
    Kirsch DG, Doseff A, Chau BN, Lim DS, de Souza-Pinto NC, Hansford R, Kastan MB, Lazabnik YA, Hardwich JM (1999) Caspase-3-dependent cleavage of bcl-2 promotes release of cytochrome c. J Biol Chem 274:21155CrossRefPubMedGoogle Scholar
  22. 22.
    Kitamura K, Minami Y, Yamamoto K, Akao Y, Kiyoi H, Saito H, Naoe T (2000) Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia 14:1743CrossRefPubMedGoogle Scholar
  23. 23.
    Kito M, Akao Y, Ohishi N, Yagi K, Nozawa Y (2002) Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 291:861CrossRefPubMedGoogle Scholar
  24. 24.
    Lampidis TJ, Salet C, Moreno G, Chen LB (1984) Effects of the mitochondrial probe rhodamine 123 and related analogs on the function and viability of pulsating myocardial cells in culture. Agents Actions 14:751PubMedGoogle Scholar
  25. 25.
    Lee TC, Wei ML, Chang WJ, Ho IC, Lo JF, Jan KY, Huang H (1989) Elevation of glutathione levels and glutathione S-transferase activity in arsenic-resistant Chinese hamster ovary cells. In Vitro Dev Biol 25:442Google Scholar
  26. 26.
    Liu J, Shen HM, Ong CN (2001) Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci 69:1833CrossRefPubMedGoogle Scholar
  27. 27.
    Liu W, Liu R, Chun JT, Bi R, Hoe W, Schreiber SS, Baudry M (2001) Kainate cytotoxicity in organotypic hippocampal slice culture: evidence for multiple apoptotic pathway. Brain Res 916:239CrossRefPubMedGoogle Scholar
  28. 28.
    Liu ZL, Onda K, Tanaka S, Toma T, Hirano T, Oka K (2002) Induction of multidrug resistance in MOLT-4 cells by anti-cancer agents is closely related to increased expression of functional P-glycoprotein and MDR1 mRNA. Cancer Chemother Pharmacol 49:391CrossRefPubMedGoogle Scholar
  29. 29.
    Lo JF, Wang HF, Tam MF, Lee TC (1992) Protein glutathione S-transferase π in an arsenic resistant Chinese hamster ovary cell line. Biochem J 288:977PubMedGoogle Scholar
  30. 30.
    Mahieux R, Pise-Masison C, Gessain A, Brady JN, Olivier R, Perret E, Misteli T, Nicot C (2001) Arsenic trioxide induces apoptosis in human T-cell leukemia virus type 1- and 2-infected cells by a caspase-3-dependent mechanism involving bcl-2 cleavage. Blood 98:3762CrossRefPubMedGoogle Scholar
  31. 31.
    Mari M, Bai J, Cederbaum AI (2002) Adenovirus-mediated overexpression of catalase in the cytosolic or mitochondrial compartment protects against toxicity caused by glutathione depletion in HepG2 cells expressing CYP2E1. J Pharmacol Exp Ther 301:111CrossRefPubMedGoogle Scholar
  32. 32.
    Nakagawa Y, Akao Y, Morikawa H, Hirata I, Katsu K, Naoe T, Ohishi N, Yagi K (2002) Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci 70:2253CrossRefPubMedGoogle Scholar
  33. 33.
    Ochi T, Kaise T, Oya-Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 50:115PubMedGoogle Scholar
  34. 34.
    Ochi T, Nakajima F, Sakurai T, Kaise T, Oya-Ohta Y (1996) Dimethylarsinic acid cause apoptosis in HL-60 cells via interaction with glutathione. Arch Toxicol 70:815CrossRefPubMedGoogle Scholar
  35. 35.
    O'Connor JE, Vargas JL, Kimler BF, Hernandez-Yago J, Grisolia S (1988) Use of rhodamine to investigate alterations in mitochondrial activity in isolated mouse liver mitochondria. Biochem Biophys Res Commun 151:568PubMedGoogle Scholar
  36. 36.
    Park JW, Choi YJ, Jang MA, Baek SH, Lim JH, Tony P, Kwon TK (2001) Arsenic trioxide induces G2/M growth arrest and apoptosis after caspase-3 activation and bcl-2 phosphorylation in promonocytic U937 cells. Biochem Biophys Res Commun 286:726CrossRefPubMedGoogle Scholar
  37. 37.
    Perkin C, Kim CN, Fang G, Bhalla KN (2000) Arsenic induces apoptosis of multidrug-resistant human myeloid leukemia cells that express Bcr-Abl or overexpress MDR, MRP, Bcl-2, or Bcl-x(L). Blood 95:1014PubMedGoogle Scholar
  38. 38.
    Pu YS, Hour TC, Chen J, Huang CY, Guan JY, Lu SH (2002) Arsenic trioxide as a novel anticancer agent against human transitional carcinoma—characterizing its apoptotic pathway. Anticancer Drugs 13:293CrossRefPubMedGoogle Scholar
  39. 39.
    Ronot X, Benel L, Adolphe M, Mounolou JC (1986) Mitochondrial analysis in living cells: the use of rhodamine 123 and flow cytometry. Biol Cell 57:1PubMedGoogle Scholar
  40. 40.
    Sakagami H, Satoh K (1997) Modulating factors of radical intensity and cytotoxic activity of ascorbate (review). Anticancer Res 17:3513PubMedGoogle Scholar
  41. 41.
    Scott N, Halelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic (III) and arsenic (V) species with glutathione. Chem Res Toxicol 6:102PubMedGoogle Scholar
  42. 42.
    Shapiro HM (2000) Membrane potential estimation by flow cytometry. Methods 21:271CrossRefPubMedGoogle Scholar
  43. 43.
    Shen HM, Yang CF, Ding WX, Liu J, Ong CN (2001) Superoxide radical-initiated apoptotic signaling pathway in selenite-treated HepG2 cells: mitochondria serve as the main target. Free Radic Biol Med 30:9CrossRefPubMedGoogle Scholar
  44. 44.
    Shen L, Chen TX, Wang YP, Lin Z, Zhao HJ, Zu YZ, Wu G, Ying DM (2000) As2O3 induces apoptosis of the human B lymphoma cell line MBC-1. J Biol Regul Homeost Agents 14:116PubMedGoogle Scholar
  45. 45.
    Shen ZX, Chen GQ, Ni JH, Li XS, Xiong SM Q, Qiu QY, Zhu J, Tang W, Sun GL, Yang KQ, Chen Y, Zhou L, Fang ZW, Wang YT, Ma J, Zhang P, Zhang TD, Chen SJ, Chen Z, Wang ZY (1997) Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood 89:3354PubMedGoogle Scholar
  46. 46.
    Shen ZY, Shen J, Li QS, Chen JY, Yi Z (2002) Morphological and functional changes of mitochondria in apoptotic esophageal carcinoma cells induced by arsenic trioxide. World J Gastroenterol 8:31PubMedGoogle Scholar
  47. 47.
    Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, Stone RM, Kalaycio M, Scheinberg DA, Steinherz P, Sievers EL, Coutre S, Dahlberg S, Ellison R, Warrell RP Jr (2001) United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol 19:3852PubMedGoogle Scholar
  48. 48.
    Susin SA, Zamzami N, Kroemer G (1998) Mitochondria as regulators of apoptosis: doubt on more. Biochim Biophys Acta 1366:151PubMedGoogle Scholar
  49. 49.
    Thomas DJ, Styblo M, Lin S (2001) The cell metabolism and systemic toxicity of arsenic (review). Toxicol Appl Pharmacol 176:127CrossRefPubMedGoogle Scholar
  50. 50.
    Thomas WD, Zhang XD, Franco AV, Nguyen T, Hersey P (2000) TNF-related apoptosis-inducing ligand-induced apoptosis of melanoma is associated with changes in mitochondrial membrane potential and perinuclear clustering of mitochondria. J Immunol 165:5612PubMedGoogle Scholar
  51. 51.
    Vera JC, Rivas CL, Fischbarg J, Golde DW (1993) Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 364:79PubMedGoogle Scholar
  52. 52.
    Watson RW, Redmond HP, Wang JH, Bouchier-Hayes D (1996) Mechanism involved in sodium arsenite-induced apoptosis of human neutrophils. J Leukoc Biol 60:625PubMedGoogle Scholar
  53. 53.
    Welch RW, Wang Y, Crossman A Jr, Park JB, Kirk KL, Levine M (1995) Accumulation of vitamin C (ascorbate) and its oxidized metabolite dehydroascorbic acid occurs by separate mechanisms. J Biol Chem 270:12584CrossRefPubMedGoogle Scholar
  54. 54.
    Yang CF, Shen HM, Ong CN (2000) Intracellular thiol depletion causes mitochondrial permeability transition in ebselen-induced apoptosis. Arch Biochem Biophys 380:319CrossRefPubMedGoogle Scholar
  55. 55.
    Yang CH, Kuo, ML, Chen JC, Chen YC (1999) Arsenic trioxide sensitivity is associated with low level of glutathione in cancer cells. Br J Cancer 81:796CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang W, Ohnishi K, Shigeno K, Fujisawa S, Naito K, Nakamura S, Takeshita K, Takeshita A, Ohno R (1998) The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 12:1383CrossRefPubMedGoogle Scholar
  57. 57.
    Zhang Y, Nie L (2001) Studies of apoptosis of malignant lymphoma cells induced by arsenic trioxide. Cell Biol Int 25:1003Google Scholar
  58. 58.
    Zhu XF, Liu ZC, Xie BF, Li ZM, Feng GK, Xie HH, Wu SJ, Yang RZ, Wei XY, Zeng YX (2002) Involvement of caspase-3 activation in squamocin-induced apoptosis in leukemia cell line HL-60. Life Sci 70:1259CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Clinical Pharmacology, School of PharmacyTokyo University of Pharmacy and Life ScienceTokyoJapan
  2. 2.National Therapeutic Center of Hematology of Traditional Chinese Medicine, XiYuan HospitalChina Academy of Traditional Chinese MedicineBeijingP.R. China

Personalised recommendations