Advertisement

Unmanipulated haploidentical hematopoietic stem cell transplantation using very low-dose antithymocyte globulin and methylprednisolone in adults with relapsed/refractory acute leukemia

  • Tatsuya Konishi
  • Noriko DokiEmail author
  • Akihito Nagata
  • Yuta Yamada
  • Toshiaki Takezaki
  • Satoshi Kaito
  • Shuhei Kurosawa
  • Masahiro Sakaguchi
  • Kaito Harada
  • Shunichiro Yasuda
  • Kosuke Yoshioka
  • Kyoko Inamoto
  • Takashi Toya
  • Aiko Igarashi
  • Yuho Najima
  • Takeshi Kobayashi
  • Kazuhiko Kakihana
  • Hisashi Sakamaki
  • Kazuteru Ohashi
Original Article
  • 41 Downloads

Abstract

Allogeneic hematopoietic stem cell transplantation (HSCT) could be the only curative therapy for patients with relapsed/refractory acute leukemia (RRAL). Many reports have described unmanipulated haploidentical HSCT (HID-HSCT) using high-dose antithymocyte globulin (ATG). However, the transplant outcomes of HID-HSCT using very low-dose ATG (thymoglobulin, 2–2.5 mg/kg) and methylprednisolone (mPSL, 1 mg/kg) for patients with RRAL have not been reported. We compared the outcomes of 46 patients with RRAL who underwent HID-HSCT using very low-dose ATG (thymoglobulin) and mPSL with the outcomes of 72 patients who underwent non-HID-HSCT. Patient characteristics differed regarding conditioning intensity (myeloablative; 19.6% in HID-HSCT vs. 61.1% in non-HID-HSCT, P < 0.001) and having undergone multiple HSCT (26.1% vs. 11.1%, P = 0.045). However, we found no significant differences in the 1-year overall survival (OS, 31.7% vs. 29.1%; P = 0.25), disease-free survival (DFS, 20.5% vs. 23.7%; P = 0.23), cumulative incidence of relapse (CIR, 40.0% vs. 42.8%; P = 0.92), non-relapse mortality (NRM, 39.5% vs. 33.5%; P = 0.22), or 100-day grade II–IV acute graft-versus-host disease (32.6% vs. 34.7%; P = 0.64) following HID-HSCT vs. non-HID-HSCT, respectively. Subgroup analysis stratified by disease and intensity of conditioning regimen demonstrated the same results between HID-HSCT and non-HID-HSCT. Furthermore, multivariate analysis showed that HID-HSCT was not an independent prognostic factor for OS (hazard ratio (HR) = 0.95 [95% confidence interval (CI), 0.58–1.58]), DFS (HR = 1.05 [95%CI, 0.67–1.68]), CIR (HR = 0.84 [95%CI, 0.48–1.47]), or NRM (HR = 1.28 [95%CI, 0.66–2.46]). In summary, transplant outcomes for RRAL were comparable in the HID-HSCT and non-HID-HSCT groups. HID-HSCT using very low-dose ATG and mPSL for RRAL may be a viable alternative to non-HID-HSCT.

Keywords

Haploidentical hematopoietic stem cell transplantation Very low-dose antithymocyte globulin Relapsed/refractory acute leukemia 

Notes

Compliance with ethical standards

This study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital (approval number 1985).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Duval M, Klein JP, He W, Cahn JY, Cairo M, Camitta BM, Kamble R, Copelan E, de Lima M, Gupta V, Keating A, Lazarus HM, Litzow MR, Marks DI, Maziarz RT, Rizzieri DA, Schiller G, Schultz KR, Tallman MS, Weisdorf D (2010) Hematopoietic stem-cell transplantation for acute leukemia in relapse or primary induction failure. J Clin Oncol 28:3730–3738CrossRefGoogle Scholar
  2. 2.
    Gyurkocza B, Lazarus HM, Giralt S (2017) Allogeneic hematopoietic cell transplantation in patients with AML not achieving remission: potentially curative therapy. Bone Marrow Transplant 52:1083–1090CrossRefGoogle Scholar
  3. 3.
    Othus M, Appelbaum FR, Petersdorf SH, Kopecky KJ, Slovak M, Nevill T, Brandwein J, Larson RA, Stiff PJ, Walter RB, Tallman MS, Stenke L, Erba HP (2015) Fate of patients with newly diagnosed acute myeloid leukemia who fail primary induction therapy. Biol Blood Marrow Transplant 21:559–564CrossRefGoogle Scholar
  4. 4.
    Rashidi A, Weisdorf DJ, Bejanyan N (2018) Treatment of relapsed/refractory acute myeloid leukaemia in adults. Br J Haematol 181:27–37CrossRefGoogle Scholar
  5. 5.
    Ballen KK, Koreth J, Chen YB, Dey BR, Spitzer TR (2012) Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood 119:1972–1980CrossRefGoogle Scholar
  6. 6.
    Fuchs EJ. (2012) Haploidentical transplantation for hematologic malignancies: where do we stand? Hematology Am Soc Hematol Educ Program:230–236CrossRefGoogle Scholar
  7. 7.
    Yang B, Yu R, Cai L,et al.(2018) Haploidentical versus matched donor stem cell transplantation for patients with hematological malignancies: a systemic review and meta-analysis. Bone Marrow Transplant.Jul 9. doi:  https://doi.org/10.1038/s41409-018-0239-9 CrossRefGoogle Scholar
  8. 8.
    Aversa F, Tabilio A, Terenzi A et al (1994) Successful engraftment of T-cell-depleted haploidentical “three-loci” incompatible transplants in leukemia patients by addition of recombinant human granulocyte colony-stimulating factor-mobilized peripheral blood progenitor cells to bone marrow inoculum. Blood 84:3948–3955CrossRefGoogle Scholar
  9. 9.
    Lu DP, Dong L, Wu T, Huang XJ, Zhang MJ, Han W, Chen H, Liu DH, Gao ZY, Chen YH, Xu LP, Zhang YC, Ren HY, Li D, Liu KY (2006) Conditioning including antithymocyte globulin followed by unmanipulated HLA-mismatched/haploidentical blood and marrow transplantation can achieve comparable outcome with HLA-identical sibling transplantation. Blood 107:3065–3073CrossRefGoogle Scholar
  10. 10.
    Bashey A, Zhang X, Sizemore CA, Manion K, Brown S, Holland HK, Morris LE, Solomon SR (2013) T-cell-replete HLA-haploidentical hematopoietic transplantation for hematologic malignancies using post-transplantation cyclophosphamide results in outcomes equivalent to those of contemporaneous HLA-matched related and unrelated donor transplantation. J Clin Oncol 31:1310–1316CrossRefGoogle Scholar
  11. 11.
    Ogawa H, Ikegame K, Yoshihara S, Kawakami M, Fujioka T, Masuda T, Taniguchi Y, Hasei H, Kaida K, Inoue T, Kim EH, Kawase I (2006) Unmanipulated HLA 2-3 antigen-mismatched (haploidentical) stem cell transplantation using nonmyeloablative conditioning. Biol Blood Marrow Transplant 12:1073–1084CrossRefGoogle Scholar
  12. 12.
    Ikegame K, Yoshida T, Yoshihara S, Daimon T, Shimizu H, Maeda Y, Ueda Y, Kaida K, Ishii S, Taniguchi K, Okada M, Tamaki H, Okumura H, Kaya H, Kurokawa T, Kodera Y, Taniguchi S, Kanda Y, Ogawa H (2015) Unmanipulated haploidentical reduced-intensity stem cell transplantation using fludarabine, busulfan, low-dose antithymocyte globulin, and steroids for patients in non-complete remission or at high risk of relapse: a prospective multicenter phase I/II study in Japan. Biol Blood Marrow Transplant 21:1495–1505CrossRefGoogle Scholar
  13. 13.
    Kako S, Akahoshi Y, Harada N, Nakano H, Kameda K, Ugai T, Yamasaki R, Wada H, Ishihara Y, Kawamura K, Sakamoto K, Sato M, Ashizawa M, Terasako-Saito K, Kimura SI, Kikuchi M, Nakasone H, Yamazaki R, Kanda J, Kanda Y (2017) HLA-mismatched haploidentical transplantation using low-dose antithymocyte globulin. Hematology 22:129–135CrossRefGoogle Scholar
  14. 14.
    Gu B, Zhang X, Chen G, Wu X, Ma X, Chen S, Wu D (2018) Efficacy of haploidentical hematopoietic stem cell transplantation compared to HLA-matched transplantation for primary refractory acute myeloid leukemia. Ann Hematol 97:2185–2194CrossRefGoogle Scholar
  15. 15.
    Storek J, Mohty M, Boelens JJ (2015) Rabbit anti-T cell globulin in allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 21:959–970CrossRefGoogle Scholar
  16. 16.
    Mori J, Ohashi K, Yamaguchi T, Ando M, Hirashima Y, Kobayashi T, Kakihana K, Sakamaki H (2012) Risk assessment for acute kidney injury after allogeneic hematopoietic stem cell transplantation based on Acute Kidney Injury Network criteria. Intern Med 51:2105–2110CrossRefGoogle Scholar
  17. 17.
    Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J, Thomas ED (1995) 1994 consensus conference on acute GVHD grading. Bone Marrow Transplant 15:825–828PubMedGoogle Scholar
  18. 18.
    Shulman HM, Sullivan KM, Weiden PL et al (1980) Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med 69:204–217CrossRefGoogle Scholar
  19. 19.
    Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE, Rubinstein P, Kurtzberg J (2001) Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N Engl J Med 344:1815–1822CrossRefGoogle Scholar
  20. 20.
    NCCN. Acute myeloid leukemia NCCN guidelines. NCCN Clin Pract Guidelines Oncol 2016;2.2016:1–100Google Scholar
  21. 21.
    Bacigalupo A, Dominietto A, Ghiso A et al (2015) Unmanipulated haploidentical bone marrow transplantation and post-transplant cyclophosphamide for hematologic malignancies following a myeloablative conditioning: an update. Bone Marrow Transplant 50:S37–S39CrossRefGoogle Scholar
  22. 22.
    Brunello L, Passera R, Dellacasa CM, Giaccone L, Audisio E, Ferrero D, D’Ardia S, Allione B, Aydin S, Festuccia M, Lia G, Crisà E, Maffini E, Butera S, Busca A, Bruno B (2018) Haplo-identical allografting with post-transplant cyclophosphamide in high-risk patients. Ann Hematol 97:2205–2215.  https://doi.org/10.1007/s00277-018-3433-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Devillier R, Bramanti S, Fürst S, Sarina B, el-Cheikh J, Crocchiolo R, Granata A, Chabannon C, Morabito L, Harbi S, Faucher C, Santoro A, Weiller PJ, Vey N, Carlo-Stella C, Castagna L, Blaise D (2016) T-replete haploidentical allogeneic transplantation using post-transplantation cyclophosphamide in advanced AML and myelodysplastic syndromes. Bone Marrow Transplant 51:194–198CrossRefGoogle Scholar
  24. 24.
    Artz AS (2016) Biologic vs physiologic age in the transplant candidate. Hematology Am Soc Hematol Educ Program 2016:99–105CrossRefGoogle Scholar
  25. 25.
    Admiraal R, Nierkens S, de Witte MA et al (2017) Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: a multicentre, retrospective, pharmacodynamic cohort analysis. Lancet Haematol 4:e183–e191CrossRefGoogle Scholar
  26. 26.
    Cho BS, Yoon JH, Shin SH, Yahng SA, Lee SE, Eom KS, Kim YJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW, Min WS, Park CW, Kim HJ (2012) Comparison of allogeneic stem cell transplantation from familial-mismatched/haploidentical donors and from unrelated donors in adults with high-risk acute myelogenous leukemia. Biol Blood Marrow Transplant 18:1552–1563CrossRefGoogle Scholar
  27. 27.
    Chang YJ, Wang Y, Mo XD, Zhang XH, Xu LP, Yan CH, Chen H, Chen YH, Chen Y, Han W, Wang FR, Wang JZ, Liu KY, Huang XJ (2017) Optimal dose of rabbit thymoglobulin in conditioning regimens for unmanipulated, haploidentical, hematopoietic stem cell transplantation: long-term outcomes of a prospective randomized trial. Cancer. 123:2881–2892CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tatsuya Konishi
    • 1
  • Noriko Doki
    • 1
    Email author
  • Akihito Nagata
    • 1
  • Yuta Yamada
    • 1
  • Toshiaki Takezaki
    • 1
  • Satoshi Kaito
    • 1
  • Shuhei Kurosawa
    • 1
  • Masahiro Sakaguchi
    • 1
  • Kaito Harada
    • 1
  • Shunichiro Yasuda
    • 1
  • Kosuke Yoshioka
    • 1
  • Kyoko Inamoto
    • 1
  • Takashi Toya
    • 1
  • Aiko Igarashi
    • 1
  • Yuho Najima
    • 1
  • Takeshi Kobayashi
    • 1
  • Kazuhiko Kakihana
    • 1
  • Hisashi Sakamaki
    • 1
  • Kazuteru Ohashi
    • 1
  1. 1.Hematology DivisionTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan

Personalised recommendations