The increased neopterin content in turkish pediatric patients with sickle cell anemia

  • Suna Sabuncuoğlu
  • Yeşim Öztaş
  • Ahmet Yalcinkaya
  • Selma Ünal
  • Terken Baydar
  • Gözde GirginEmail author
Original Article


In the present study, the possible activation of cellular immunity in SCD patients was investigated. As immune activation parameters, neopterin concentrations and kynurenine/tryptophan ratio for tryptophan degradation in 35 pediatric patients with sickle cell disease (31 HbSS and 4 HbSß) were determined. Our results have shown that neopterin levels (both urinary and serum) are increased in pediatric patients with sickle cell disease. The increase in neopterin concentration was accompanied by significantly increased biopterin, kynurenine concentration and kynurenine/tryptophan ratio. The mechanism of immune activation and the effects of inflammatory mediators in sickle cell disease are poorly understood, especially in terms of cell-mediated immunity. Further in-vivo and in-vitro studies are required to illuminate the association between neopterin levels and neutrophil activation in sickle cell disease.


Neopterin Tryptophan Kynurenine Biopterin Sickle cell Anemia 


Compliance with ethical standards

Conflict of interest

No conflict of interest was declared by the authors.


  1. 1.
    Claster S, Vichinsky EP (2003) Managing sickle cell disease. BMJ: British Medical Journal 327(7424):1151CrossRefGoogle Scholar
  2. 2.
    Schnog J, Duits A, Muskiet F, Ten Cate H, Rojer R, Brandjes D (2004) Sickle cell disease; a general overview. Neth J Med 62(10):364–374PubMedGoogle Scholar
  3. 3.
    Kumar AA, Patton MR, Hennek JW, Lee SYR, D’Alesio-Spina G, Yang X, Kanter J, Shevkoplyas SS, Brugnara C, Whitesides GM (2014) Density-based separation in multiphase systems provides a simple method to identify sickle cell disease. Proc Natl Acad Sci 111(41):14864–14869CrossRefGoogle Scholar
  4. 4.
    DeBaun MR, Galadanci NA (2019) Sickle cell disease in sub-Saharan Africa. Wolters Kluwer UpToDate.
  5. 5.
    Soylemez-Gokyer D, Kayaalti Z (2016) Distribution of sickle cell Anemia in Turkey, pathophysiology and Iron toxicity. Marmara Pharmaceutical Journal 20(2)CrossRefGoogle Scholar
  6. 6.
    Buchanan G, Vichinsky E, Krishnamurti L, Shenoy S (2010) Severe sickle cell disease—pathophysiology and therapy. Biology of Blood and Marrow Transplantation 16(1):S64–S67CrossRefGoogle Scholar
  7. 7.
    Wang WC (2007) The pathophysiology, prevention, and treatment of stroke in sickle cell disease. Curr Opin Hematol 14(3):191–197CrossRefGoogle Scholar
  8. 8.
    Yuditskaya S, Suffredini AF, Kato GJ (2010) The proteome of sickle cell disease: insights from exploratory proteomic profiling. Expert review of proteomics 7(6):833–848CrossRefGoogle Scholar
  9. 9.
    Pace BS, Ofori-Acquah SF, Peterson KR (2012) Sickle cell disease: genetics, cellular and molecular mechanisms, and therapies. Anemia 2012Google Scholar
  10. 10.
    Fibach E, Rachmilewitz E (2008) The role of oxidative stress in hemolytic anemia. Curr Mol Med 8(7):609–619CrossRefGoogle Scholar
  11. 11.
    Heistermann M, Higham JP (2015) Urinary neopterin, a non-invasive marker of mammalian cellular immune activation, is highly stable under field conditions. Sci Rep-Uk 5:16308CrossRefGoogle Scholar
  12. 12.
    Fuchs D, Weiss G, Reibnegger G, Wachter H (1992) The role of neopterin as a monitor of cellular immune activation in transplantation, inflammatory, infectious, and malignant diseases. Crit Rev Clin Lab Sci 29(3–4):307–344CrossRefGoogle Scholar
  13. 13.
    Ploder M, Spittler A, Schroecksnadel K, Neurauter G, Pelinka LE, Roth E, Fuchs D (2009) Accelerated tryptophan degradation in trauma and sepsis patients is related to pro-inflammatory response and to the diminished in vitro response of monocytes. Pteridines 20(1):54–61CrossRefGoogle Scholar
  14. 14.
    Thöny B, Auerbach G, Nenad B (2000) Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J 347(1):1–16CrossRefGoogle Scholar
  15. 15.
    Cunnington C, Channon KM (2010) Tetrahydrobiopterin: pleiotropic roles in cardiovascular pathophysiology. Heart:hrt. 2009:180430Google Scholar
  16. 16.
    Guibal P, Lévêque N, Doummar D, Giraud N, Roze E, Rodriguez D, Rm C, Billette De Villemeur T, Moussa F (2014) Simultaneous determination of all forms of biopterin and neopterin in cerebrospinal fluid. ACS Chem Neurosci 5(7):533–541CrossRefGoogle Scholar
  17. 17.
    Chen Y, Guillemin GJ (2009) Kynurenine pathway metabolites in humans: disease and healthy states. International journal of tryptophan research 2:IJTR. S2097Google Scholar
  18. 18.
    Wang Q, Liu D, Song P, Zou M-H (2015) Deregulated tryptophan-kynurenine pathway is linked to inflammation, oxidative stress, and immune activation pathway in cardiovascular diseases. Frontiers in bioscience (Landmark edition) 20:1116CrossRefGoogle Scholar
  19. 19.
    Weiss G (1999) Iron and anemia of chronic disease. Kidney Int 55:S12–S17CrossRefGoogle Scholar
  20. 20.
    Madu AJ, Ughasoro MD (2017) Anaemia of chronic disease: an in-depth review. Med Princ Pract 26(1):1–9CrossRefGoogle Scholar
  21. 21.
    Chies J, Nardi N (2001) Sickle cell disease: a chronic inflammatory condition. Med Hypotheses 57(1):46–50CrossRefGoogle Scholar
  22. 22.
    Baydar T, Yuksel O, Sahin TT, Dikmen K, Girgin G, Sipahi H, Kurukahvecioglu O, Bostanci H, Sare M (2009) Neopterin as a prognostic biomarker in intensive care unit patients. J Crit Care 24(3):318–321CrossRefGoogle Scholar
  23. 23.
    Widner B, Werner ER, Schennach H, Wachter H, Fuchs D (1997) Simultaneous measurement of serum tryptophan and kynurenine by HPLC. Clin Chem 43(12):2424–2426PubMedGoogle Scholar
  24. 24.
    Girgin G, Sahin TT, Fuchs D, Yuksel O, Kurukahvecioglu O, Sare M, Baydar T (2011) Tryptophan degradation and serum neopterin concentrations in intensive care unit patients. Toxicol Mech Methods 21(3):231–235CrossRefGoogle Scholar
  25. 25.
    Kanter J, Kruse-Jarres R (2013) Management of sickle cell disease from childhood through adulthood. Blood Rev 27(6):279–287CrossRefGoogle Scholar
  26. 26.
    Hebbel RP, Osarogiagbon R, Kaul D (2004) The endothelial biology of sickle cell disease: inflammation and a chronic vasculopathy. Microcirculation 11(2):129–151CrossRefGoogle Scholar
  27. 27.
    Sanhadji K, Chout R, Gessain A, Sasco AJ, Yoyo M, Mezard F, de The G, Touraine JL (1988) Cell-mediated immunity in patients with sickle cell anaemia. Thymus 12(4):203–213PubMedGoogle Scholar
  28. 28.
    Wang WC, Herrod HG, Valenski WR, Wyatt RJ (1988) Lymphocyte and complement abnormalities in splenectomized patients with hematologic disorders. Am J Hematol 28(4):239–245CrossRefGoogle Scholar
  29. 29.
    Musa BO, Onyemelukwe GC, Hambolu JO, Mamman AI, Isa AH (2010) Pattern of serum cytokine expression and T-cell subsets in sickle cell disease patients in vaso-occlusive crisis. Clin Vaccine Immunol 17(4):602–608. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Keikhaei B, Mohseni AR, Norouzirad R, Alinejadi M, Ghanbari S, Shiravi F, Solgi G (2013) Altered levels of pro-inflammatory cytokines in sickle cell disease patients during vaso-occlusive crises and the steady state condition. Eur Cytokine Netw 24(1):45–52. CrossRefPubMedGoogle Scholar
  31. 31.
    Makis AC, Hatzimichael EC, Bourantas KL (2000) The role of cytokines in sickle cell disease. Ann Hematol 79(8):407–413CrossRefGoogle Scholar
  32. 32.
    Gilli SCO, Pericole FV, Benites BD, Castilho L, Addas-Carvalho M, Costa FF, Saad STO (2014) Cytokines polymorphisms and relationship with cytokine expression in sickle cell disease. Blood 124(21)CrossRefGoogle Scholar
  33. 33.
    Michalak L, Bulska M, Strzabala K, Szczesniak P (2017) Neopterin as a marker of cellular immunological response. Postep Hig Med Dosw 71:727–736CrossRefGoogle Scholar
  34. 34.
    Rodrigues L, Costa FF, Saad ST, Grotto HZ (2006) High levels of neopterin and interleukin-3 in sickle cell disease patients. J Clin Lab Anal 20(3):75–79. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Lanaro C, Franco-Penteado CF, Albuqueque DM, Saad ST, Conran N, Costa FF (2009) Altered levels of cytokines and inflammatory mediators in plasma and leukocytes of sickle cell anemia patients and effects of hydroxyurea therapy. J Leukoc Biol 85(2):235–242. CrossRefPubMedGoogle Scholar
  36. 36.
    Werner ER, Werner-Felmayer G, Fuchs D, Hausen A, Reibnegger G, Wachter H (1989) Parallel induction of tetrahydrobiopterin biosynthesis and indoleamine 2, 3-dioxygenase activity in human cells and cell lines by interferon-γ. Biochem J 262(3):861–866CrossRefGoogle Scholar
  37. 37.
    Tanaka K, Kaufman S, Milstien S (1989) Tetrahydrobiopterin, the cofactor for aromatic amino acid hydroxylases, is synthesized by and regulates proliferation of erythroid cells. Proc Natl Acad Sci 86(15):5864–5867CrossRefGoogle Scholar
  38. 38.
    Waclawikova B, El Aidy S (2018) Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharmaceuticals 11: E63. CrossRefGoogle Scholar
  39. 39.
    Yeung AW, Terentis AC, King NJ, Thomas SR (2015) Role of indoleamine 2, 3-dioxygenase in health and disease. Clin Sci 129(7):601–672CrossRefGoogle Scholar
  40. 40.
    Taylor S, Shacks S, Villicana S, Olivares J, Dinkins G (1990) Interferon production in sickle cell disease. Lymphokine research 9(3):415–423PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Suna Sabuncuoğlu
    • 1
  • Yeşim Öztaş
    • 2
  • Ahmet Yalcinkaya
    • 2
  • Selma Ünal
    • 3
  • Terken Baydar
    • 1
  • Gözde Girgin
    • 1
    Email author
  1. 1.Faculty of Pharmacy, Department of ToxicologyHacettepe UniversityAnkaraTurkey
  2. 2.Faculty of Medicine, Department of BiochemistryHacettepe UniversityAnkaraTurkey
  3. 3.Faculty of Medicine, Department of PediatricsMersin UniversityMersinTurkey

Personalised recommendations