Advertisement

Peripheral neuropathy following bortezomib therapy in multiple myeloma patients: association with cumulative dose, heparanase, and TNF-α

  • Weiwei Zhao
  • Wei WangEmail author
  • Xiaoyun Li
  • Yijun Liu
  • Haiyan Gao
  • Yongfang Jiang
  • Ying Wang
Original Article

Abstract

Multiple myeloma (MM) is a plasma cell neoplasm which constitutes about 10% of all hematologic malignancies. Despite bortezomib is a promising new generation of drugs for MM, its clinical use is limited by peripheral neurotoxicity in the vast majority of patients, which can be severe and require a reduction of dose or even treatment withdrawal. Tumor necrosis factor-α (TNF-α), as the most important inflammatory factor, could induce the inflammatory response and expression of heparanase (HPSE), which may play a crucial role in peripheral neuropathy after chemotherapy. However, the role of TNF-α in bortezomib-induced peripheral neuropathy (BIPN) has not been reported. In this study, treatment-emergent neuropathy was assessed by total neuropathy score and electrophysiological examination. The expression level of TNF-α and HPSE were evaluated by enzyme-linked immunosorbent assay. The effects of anti-TNF-α on the evolution of neuropathy were tested in rat models of neurotoxicity. The results indicated that with the augment of cumulative dose of bortezomib, the incidence of neuropathy was increased. Moreover, bortezomib administration induced the expression of TNF-α. With the increased expression of TNF-α, neuropathy was exacerbated. TNF-α-induced expression of HSPE was secondary to the development of neuropathy. Co-administration of anti-TNF-α in bortezomib therapy has a potential neuroprotective effect on BIPN in rats. TNF-α participates in the pathogenesis of BIPN, which represents an attractive target for future therapeutic intervention.

Keywords

Multiple myeloma Bortezomib Peripheral neuropathy Heparanase Tumor necrosis factor-α 

Notes

Acknowledgments

This work was supported by the Second Affiliated Hospital of Harbin Medical University.

Funding information

This work was financially supported by grants from the Youth Science Fund of the Natural Science Foundation of China (81001051), Postdoctoral Science Foundation of China (2015M580270), Postdoctoral Science Foundation of Heilongjiang Province (LBH-Z15129), and the Young and middle-aged Science Foundation of Harbin Medical University (KYCX2018-15).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All institutional and national guidelines for the care and use of laboratory animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Kim K, Lee JH, Kim JS, Min CK, Yoon SS, Shimizu K, Chou T, Kosugi H, Suzuki K, Chen W, Hou J, Lu J, Huang XJ, Huang SY, Chng WJ, Tan D, Teoh G, Chim CS, Nawarawong W, Siritanaratkul N, Durie BG (2014) Clinical profiles of multiple myeloma in Asia-An Asian Myeloma Network study. Am J Hematol 89:751–756.  https://doi.org/10.1002/ajh.23731 CrossRefPubMedGoogle Scholar
  2. 2.
    Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsina M, Adams J, Kauffman M, Esseltine DL, Schenkein DP, Anderson KC (2004) A phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127(2):165–172.  https://doi.org/10.1111/j.1365-2141.2004.05188.x CrossRefPubMedGoogle Scholar
  3. 3.
    Lonial S (2005) Risk factors and kinetics of thrombocytopenia associated with bortezomib for relapsed, refractory multiple myeloma. Blood 106(12):3777–3784.  https://doi.org/10.1182/blood-2005-03-1173 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Koeppen S (2014) Treatment of multiple myeloma: thalidomide-, bortezomib-, and lenalidomide-induced peripheral neuropathy. Oncol Res Treat 37(9):506–513.  https://doi.org/10.1159/000365534 CrossRefPubMedGoogle Scholar
  5. 5.
    Voorhees PM, Dees EC, O’Neil B, Orlowski RZ (2003) The proteasome as a target for cancer therapy. Clin Cancer Res 17(9):6316–6325Google Scholar
  6. 6.
    Harousseau JL, Attal M, Leleu X, Troncy J, Pegourie B, Stoppa AM, Hulin C, Benboubker L, Fuzibet JG, Renaud M, Moreau P, Avet-Loiseau H (2006) Bortezomib plus dexamethasone as induction treatment prior to autologous stem cell transplantation in patients with newly diagnosed multiple myeloma: results of an IFM phase II study. Haematologica 91(11):1498–1505.  https://doi.org/10.1200/jco.2005.23.16_suppl.6653 CrossRefPubMedGoogle Scholar
  7. 7.
    Jagannath S, Durie BGM, Wolf J, Camacho E, Irwin D, Lutzky J, McKinley M, Gabayan E, Mazumder A, Schenkein D, Crowley J (2005) Bortezomib therapy alone and in combination with dexamethasone for previously untreated symptomatic multiple myeloma. Br J Haematol 129(6):776–783.  https://doi.org/10.1111/j.1365-2141.2005.05540.x CrossRefPubMedGoogle Scholar
  8. 8.
    Richardson PG, Briemberg H, Jagannath S, Wen PY, Barlogie B, Berenson J, Singhal S, Siegel DS, Irwin D, Schuster M, Srkalovic G, Alexanian R, Rajkumar SV, Limentani S, Alsina M, Orlowski RZ, Najarian K, Esseltine D, Anderson KC, Amato AA (2006) Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol 24:3113–3120.  https://doi.org/10.1200/JCO.2005.04.7779 CrossRefPubMedGoogle Scholar
  9. 9.
    Richardson PG, Barlogie B, Berenson J, Singhal S, Jagannath S, Irwin D, S. Rajkumar V, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein D, Anderson K (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348(26):2609–2017.  https://doi.org/10.1056/NEJMoa030288 CrossRefPubMedGoogle Scholar
  10. 10.
    Schlafer D, Shah KS, Panjic EH, Lonial S (2017) Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opin Drug Saf 16(2):167–183.  https://doi.org/10.1080/14740338.2017.1259310 CrossRefPubMedGoogle Scholar
  11. 11.
    Mohty B, El-Cheikh J, Yakoub-Agha I, Moreau P, Harousseau JL, Mohty M (2010) Peripheral neuropathy and new treatments for multiple myeloma: background and practical recommendations. Haematologica 95:311–319.  https://doi.org/10.3324/haematol.2009.012674 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bringhen S, Larocca A, Rossi D, Cavalli M, Genuardi M, Ria R, Gentili S, Patriarca F, Nozzoli C, Levi A, Guglielmelli T, Benevolo G, Callea V, Rizzo V, Cangialosi C, Musto P, De Rosa L, Liberati AM, Grasso M, Falcone AP, Evangelista A, Cavo M, Gaidano G, Boccadoro M, Palumbo A (2010) Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. Blood 116(23):4745–4753.  https://doi.org/10.1182/blood-2010-07-294983 CrossRefPubMedGoogle Scholar
  13. 13.
    Argyriou AA, Iconomou G, Kalofonos HP (2008) Bortezomib-induced peripheral neuropathy in multiple myeloma: a comprehensive review of the literature. Blood 112(5):1593–1599.  https://doi.org/10.1182/blood-2008-04-149385 CrossRefPubMedGoogle Scholar
  14. 14.
    Cavaletti G, Jakubowiak AJ (2010) Peripheral neuropathy during bortezomib treatment of multiple myeloma: a review of recent study. Leuk Lymphoma 51:1178–1187.  https://doi.org/10.3109/10428194.2010.483303 CrossRefPubMedGoogle Scholar
  15. 15.
    Oriol A, Giraldo P, Kotsianidis I, Couturier C, Olie R, Angermund R, Corso A (2014) Efficacy and safety of bortezomib-based retreatment at the first relapse in multiple myeloma patients: A retrospective study. Hematology 20(7):405–409.  https://doi.org/10.1179/1607845414Y.0000000218 CrossRefPubMedGoogle Scholar
  16. 16.
    San-Miguel JF, Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau J, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, Bladé J, Boccadoro M, Cavenagh JD, Neuwirth R, Boral AL, Esseltine D, Anderson KC (2008) Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 22(4):842–849.  https://doi.org/10.1038/sj.leu.2405087 CrossRefPubMedGoogle Scholar
  17. 17.
    Mateos MV, Richardson PG, Dimopoulos MA, Palumbo A, Anderson KC, Shi H, Elliott J, Dow E, van de Velde H, Niculescu L, San Miguel JF (2015) Effect of cumulative bortezomib dose on survival in multiple myeloma patients receiving bortezomib-melphalan-prednisone in the phase III VISTA study. Am J Hematol 90(4):314–319.  https://doi.org/10.1002/ajh.23933 CrossRefPubMedGoogle Scholar
  18. 18.
    Mateos MV, Bringhen S, Richardson PG, Lahuerta JJ, Larocca A, Oriol A, Boccadoro M, Garcia-Sanz R, Di Raimondo F, Esseltine DL, van de Velde H, Desai A, Londhe A, San Miguel JF, Palumbo A (2014) Bortezomib cumulative dose, efficacy, and tolerability with three different bortezomib-melphalan-prednisone regimens in previously untreated myeloma patients ineligible for high-dose therapy. Haematologica 99(6):1114–1122.  https://doi.org/10.3324/haematol.2013.099341 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Watanabe T, Mitsuhashi M, Sagawa M, Ri M, Suzuki K, Abe M, Ohmachi K, Nakagawa Y, Nakamura S, Chosa M, Iida S, Kizaki M (2013) Phytohemagglutinin-induced IL2 mRNA in whole blood can predict bortezomib-induced peripheral neuropathy for multiple myeloma patients. Blood Cancer J 3(10):e150.  https://doi.org/10.1038/bcj.2013.47 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Carozzi VA, Renn CL, Bardini M, Fazio G, Chiorazzi A, Meregalli C, Oggioni N, Shanks K, Quartu M, Serra MP, Sala B, Cavaletti G, Dorsey SG (2013) Bortezomib-induced painful peripheral neuropathy: an electrophysiological, behavioral, morphological and mechanistic study in the mouse. PLoS One 8(9):e72995.  https://doi.org/10.1371/journal.pone.0072995 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Gosselin D, Rivest S (2007) Role of IL-1 and TNF in the brain: twenty years of progress on a Dr. Jekyll/Mr. Hyde duality of the innate immune system. Brain Behav Immun 21(3):281–289.  https://doi.org/10.1016/j.bbi.2006.12.004 CrossRefPubMedGoogle Scholar
  22. 22.
    Xu Q, Yaksh TL (2011) A brief comparison of the pathophysiology of inflammatory versus neuropathic pain. Curr Opin Anaesthesiol 24(4):400–407.  https://doi.org/10.1097/ACO.0b013e32834871df CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen G, Wang D, Vikramadithyan R, Yagyu H, Saxena U, Pillarisetti S, Goldberg IJ (2004) Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 43(17):4971–4977.  https://doi.org/10.1021/bi0356552 CrossRefPubMedGoogle Scholar
  24. 24.
    Lerner I, Hermano E, Zcharia E, Rodkin D, Bulvik R, Doviner V, Rubinstein AM, Ishai-Michaeli R, Atzmon R, Sherman Y, Meirovitz A, Peretz T, Vlodavsky I, Elkin M (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121(5):1709–1721.  https://doi.org/10.1172/JCI43792 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen S, He Y, Hu Z, Lu S, Yin X, Ma X, Lv C, Jin G (2017) Heparanase mediates intestinal inflammation and injury in a mouse model of sepsis. J Histochem Cytochem 65(4):241–249.  https://doi.org/10.1369/0022155417692536 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Myers RR, Campana WM, Shubayev VI (2006) The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 11(1-2):8–20.  https://doi.org/10.1016/S1359-6446(05)03637-8 CrossRefGoogle Scholar
  27. 27.
    Wang Q, Zheng Q, Tan H, Zhang B, Li X, Yang Y, Yu J, Liu Y, Chai H, Wang X, Sun Z, Wang J, Zhu S, Wang F, Yang M, Guo C, Wang H, Zheng Q, Li Y, Chen Q, Zhou A, Tang T (2016) TMCO1 is an ER Ca2+ load-activated Ca2+ channel. Cell 165(6):1454–1466.  https://doi.org/10.1016/j.cell.2016.04.051 CrossRefPubMedGoogle Scholar
  28. 28.
    Strauss SJ, Maharaj L, Hoare S, Johnson PW, Radford JA, Vinnecombe S, Millard L, Rohatiner A, Boral A, Trehu E, Schenkein D, Balkwill F, Joel SP, Lister TA (2006) Bortezomib therapy in patients with relapsed or refractory lymphoma: potential correlation of in vitro sensitivity and tumor necrosis factor alpha response with clinical activity. J Clin Oncol 24(13):2105–2112.  https://doi.org/10.1200/JCO.2005.04.6789 CrossRefPubMedGoogle Scholar
  29. 29.
    Palumbo A, Bringhen S, Mateos MV, Larocca A, Facon T, Kumar SK, Offidani M, McCarthy P, Evangelista A, Lonial S, Zweegman S, Musto P, Terpos E, Belch A, Hajek R, Ludwig H, Stewart AK, Moreau P, Anderson K, Einsele H, Durie BGM, Dimopoulos MA, Landgren O, Miguel JFS, Richardson P, Sonneveld P, Rajkumar SV (2015) Geriatric assessment predicts survival and toxicities in elderly myeloma patients: an International Myeloma Working Group report. Blood 125:2068–2074.  https://doi.org/10.1182/blood-2014-12-615187 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kumar SK, Laubach JP, Giove TJ, Quick M, Neuwirth R, Yung G, Rajkumar SV, Richardson PG (2017) Impact of concomitant dexamethasone dosing schedule on bortezomib-induced peripheral neuropathy in multiple myeloma. Br J Haematol 178:756–763.  https://doi.org/10.1111/bjh.14754 CrossRefPubMedGoogle Scholar
  31. 31.
    Richardson PG, Xie W, Mitsiades C, Chanan-Khan AA, Lonial S, Hassoun H, Avigan DE, Oaklander AL, Kuter DJ, Wen PY, Kesari S, Briemberg HR, Schlossman RL, Munshi NC, Heffner LT, Doss D, Esseltine DL, Weller E, Anderson KC, Amato AA (2009) Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. J Clin Oncol 27:3518–3525.  https://doi.org/10.1200/JCO.2008.18.3087 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Delforge M, Bladé J, Dimopoulos MA, Facon T, Kropff M, Ludwig H, Palumbo A, Damme PV, San-Miguel JF, Sonneveld P (2010) Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. Lancet Oncol 11(11):1086–1095.  https://doi.org/10.1016/S1470-2045(10)70068-1 CrossRefGoogle Scholar
  33. 33.
    Rosiñol L, Oriol A, Teruel AI, Hernández D, López-Jiménez J, Rubia J, Granell M, Besalduch J, Palomera L, González Y, Etxebeste A, Díaz-Mediavilla J, Hernández MT, Arriba F, Gutiérrez NC, Martín-Ramos L, Cibeira T, Mateos V, Martínez J, Alegre A, Lahuerta JJ, Miguel JS, Bladé J (2012) Superiority of bortezomib, thalidomide, and dexamethasone (VTD) as induction pretransplantation therapy in multiple myeloma: a randomized phase 3 PETHEMA/GEM study. Blood 120:1589–1596.  https://doi.org/10.1182/blood-2012-02-408922 CrossRefPubMedGoogle Scholar
  34. 34.
    Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, Cavo M, Usmani S, Durie BG, Avet-Loiseau H (2014) IMWG consensus on risk stratification in multiple myeloma. Leukemia 28(2):269–277.  https://doi.org/10.1038/leu.2013.247 CrossRefPubMedGoogle Scholar
  35. 35.
    Palumbo A, Chanan-Khan A, Weisel K, Nooka AK, Masszi T, Beksac M, Spicka I, Hungria V, Munder M, Mateos MV, Mark TM, Qi M, Schecter J, Amin H, Qin X, Deraedt W, Ahmadi T, Spencer A, Sonneveld P (2016) Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med 375(8):754–766.  https://doi.org/10.1056/NEJMoa1606038 CrossRefPubMedGoogle Scholar
  36. 36.
    Matsuoka A, Mitsuma A, Maeda O, Kajiyama H, Kiyoi H, Kodera Y, Nagino M, Goto H, Ando Y (2016) Quantitative assessment of chemotherapy-induced peripheral neurotoxicity using a point-of-care nerve conduction device. Cancer Sci 107(10):1453–1457.  https://doi.org/10.1111/cas.13010 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hideshima T, Chauhan D, Schlossman R, Richardson P, Anderson KC (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20(33):4519–4527.  https://doi.org/10.1038/sj.onc.1204623 CrossRefPubMedGoogle Scholar
  38. 38.
    Blich M, Golan A, Arvatz G, Sebbag A, Shafat I, Sabo E, Cohen-Kaplan V, Petcherski S, Avniel-Polak S, Eitan A, Hammerman H, Aronson D, Axelman E, Ilan N, Nussbaum G, Vlodavsky I (2013) Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler Thromb Vasc Biol 2(33):e56–e65.  https://doi.org/10.1161/ATVBAHA.112.254961 CrossRefGoogle Scholar
  39. 39.
    Chiorazzi A, Canta A, Meregalli C, Carozzi V, Sala B, Oggioni N, Monbaliu J, Velde H, Cavaletti G (2013) Antibody against tumor necrosis factor-α reduces bortezomib-induced allodynia in a rat model. Anticancer Res 33:5453–5460PubMedGoogle Scholar
  40. 40.
    Cavaletti G, Gilardini A, Canta A, Rigamonti L, Rodriguez-Menendez V, Ceresa C, Marmiroli P, Bossi M, Oggioni N, D’Incalci M, Coster RD (2007) Bortezomib-induced peripheral neurotoxicity: a neurophysiological and pathological study in the rat. Exp Neurol 204:317–325.  https://doi.org/10.1016/j.expneurol.2006.11.010 CrossRefPubMedGoogle Scholar
  41. 41.
    Meregalli C, Canta A, Carozzi VA, Chiorazzi A, Oggioni N, Gilardini A, Ceresa C, Avezza F, Crippa L, Marmiroli P, Cavaletti G (2010) Bortezomib-induced painful neuropathy in rats: a behavioral, neurophysiological and pathological study in rats. Eur J Pain 14(4):343–350.  https://doi.org/10.1016/j.ejpain.2009.07.001 CrossRefPubMedGoogle Scholar
  42. 42.
    Cavaletti G, Cavalletti E, Montaguti P, Oggioni N, Negri DO, Tredici G (1997) Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology 1(18):137–145Google Scholar
  43. 43.
    Cavaletti G, Cavalletti E, Oggioni N, Sottani C, Minoia C, D’Incalci M, Zucchetti M, Marmiroli P, Tredici G (2000) Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration. Neurotoxicology 3(21):389–393.  https://doi.org/10.1046/j.1529-8027.2001.01008-5.x CrossRefGoogle Scholar
  44. 44.
    Ravaglia S, Corso A, Piccolo G, Lozza A, Alfonsi E (2008) Immune-mediated neuropathies in myeloma patients treated with bortezomib. Clin Neurophysiol 119:2507–2512.  https://doi.org/10.1016/j.clinph.2008.08.007 CrossRefPubMedGoogle Scholar
  45. 45.
    Catterall WA (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57(4):411–425.  https://doi.org/10.1124/pr.57.4.5 CrossRefPubMedGoogle Scholar
  46. 46.
    Gutter-Kapon L, Alishekevitz D, Shaked Y, Li JP, Aronheim A, Ilan N, Vlodavsky I (2016) Heparanase is required for activation and function of macrophages. Proc Natl Acad Sci U S A 113:E7808–E7817.  https://doi.org/10.1073/pnas.1611380113 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N (2016) Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 29:54–75.  https://doi.org/10.1016/j.drup.2016.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ramani VC, Vlodavsky I, Ng M, Zhang Y, Barbieri P, Noseda A, Sanderson RD (2016) Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biol 55:22–34.  https://doi.org/10.1016/j.matbio.2016.03.006 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Weiwei Zhao
    • 1
  • Wei Wang
    • 1
    Email author
  • Xiaoyun Li
    • 1
  • Yijun Liu
    • 1
  • Haiyan Gao
    • 1
  • Yongfang Jiang
    • 1
  • Ying Wang
    • 1
  1. 1.Department of HematologyThe Second Affiliated Hospital of Harbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations