Bone marrow PARP1 mRNA levels predict response to treatment with 5-azacytidine in patients with myelodysplastic syndrome

  • Panagiotis T. DiamantopoulosEmail author
  • Christina-Nefeli Kontandreopoulou
  • Argiris Symeonidis
  • Ioannis Kotsianidis
  • Vassiliki Pappa
  • Athanasios Galanopoulos
  • Theodoros Vassilakopoulos
  • Maria Dimou
  • Eleni Solomou
  • Marie-Christine Kyrtsonis
  • Marina Siakantaris
  • Maria Angelopoulou
  • Alexandra Kourakli
  • Sotirios Papageorgiou
  • Georgia Christopoulou
  • Maria Roumelioti
  • Panayiotis Panayiotidis
  • Nora-Athina Viniou
  • On behalf of the Hellenic MDS Study Group
Original Article


Poly (ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that participates in the DNA repair of malignant cells, with various consequences on their survival. We have recently shown that PARP1 mRNA levels in the bone marrow of patients with myelodysplastic syndrome (MDS) are correlated to prognosis. To evaluate PARP1 as a biomarker of response to 5-azacytidine in patients with MDS, we measured PARP1 mRNA levels by a quantitative real-time PCR in diagnostic bone marrow samples of 77 patients with MDS treated with 5-azacytidine. Patients with higher PARP1 mRNA levels had a better response to 5-azacytidine per the IWG criteria (p = 0.006) and a longer median survival after 5-azacytidine initiation (p = 0.033). Multivariate analysis revealed that PARP1 mRNA level was the only factor affecting response to treatment and survival after treatment with 5-azacytidine. A next-generation sequencing for 40 genes of interest in MDS and quantification of the methylation levels of the PARP1 promoter were also carried out in a subset of samples (16 and 18 samples respectively). It is the first time that a single, easily measurable biomarker shows a clear correlation with response to treatment and survival in a patient population consisting of previously untreated patients with MDS homogeneously treated with 5-azacytidine. The fact that PARP1 is also a treatment target in several malignancies underscores the importance of our finding for the potential use of PARP1 inhibitors in MDS.


Poly (ADP-ribose) polymerase 1 (PARP1) Myelodysplastic syndrome Prognosis 5-Azacytidine Response to treatment 



We would like to thank Mr. George Kyriakakis for his valuable help in data collection and digitization, Mrs. Angeliki Stefanou for the delicate sample-handling and storage, Mrs. Evita Alexopoulos for copy-editing the final manuscript, and Professor Demosthenes Panagiotakos for his valuable contribution in the statistical analysis of the results.

Compliance with ethical standards

Informed consent was obtained in accordance with the Declaration of Helsinki. The study was approved by the Institutional Ethics Committee.

Conflict of interest

Argiris Symeonidis, Alexandra Kourakli, and Nora-Athina Viniou report investigational grants and personal fees for presentations and advisory roles from Celgene/Genesis Pharma. Ioannis Kotsianidis, Vassiliki Pappa, Athanasios Galanopoulos, Theodoros Vassilakopoulos, Maria Angelopoulou, Sotirios Papageorgiou, and Panayiotis Panayiotidis report personal fees for honoraria and advisory roles from Celgene/Genesis Pharma. Maria Dimou reports personal fees for advisory roles from Celgene/Genesis Pharma. The remaining authors declare that they have no conflict of interest.

Supplementary material

277_2019_3650_MOESM1_ESM.docx (13 kb)
Supplementary Table 1 (DOCX 12 kb)
277_2019_3650_MOESM2_ESM.docx (16 kb)
Supplementary Table 2 (DOCX 15 kb)


  1. 1.
    Krishnakumar R, Kraus WL (2010) The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 39:8–24CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Carey LA, Sharpless NE (2011) PARP and Cancer - if it’s broke, don’t fix it. N Engl J Med 364(3):277–279CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bürkle A (2001) PARP-1: a regulator of genomic stability linked with mammalian longevity. Chembiochem. 2:725–728CrossRefPubMedGoogle Scholar
  4. 4.
    Decker P, Muller S (2002) Modulating poly (ADP-ribose) polymerase activity: potential for the prevention and therapy of pathogenic situations involving DNA damage and oxidative stress. Curr Pharm Biotechnol 3:275–283CrossRefPubMedGoogle Scholar
  5. 5.
    Bouchard VJ, Rouleau M, Poirier GG (2003) PARP-1, a determinant of cell survival in response to DNA damage. Exp Hematol 31:446–454CrossRefPubMedGoogle Scholar
  6. 6.
    Woodhouse BC, Dianov GL (2008) Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst) 7(7):1077–1086CrossRefGoogle Scholar
  7. 7.
    Tong Y, Bouska JJ, Ellis PA, Johnson EF, Leverson J, Liu X, Marcotte PA, Olson AM, Osterling DJ, Przytulinska M, Rodriguez LE, Shi Y, Soni N, Stavropoulos J, Thomas S, Donawho CK, Frost DJ, Luo Y, Giranda VL, Penning TD (2009) Synthesis and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents. J Med Chem 52(21):6803–6813CrossRefPubMedGoogle Scholar
  8. 8.
    Cockcroft XL, Dillon KJ, Dixon L, Drzewiecki J, Kerrigan F, Loh VM Jr, Martin NMB, Menear KA, Smith GCM (2006) Phthalazinones 2: optimisation and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg Med Chem Lett 16(4):1040–1044CrossRefPubMedGoogle Scholar
  9. 9.
    Kruk A, Ociepa T, Urasiński T, Grabarek J, Urasińska E (2015) PARP-1 expression in CD34+ leukemic cells in childhood acute lymphoblastic leukemia: relation to response to initial therapy and other prognostic factors. Pol J Pathol 66(3):239–245CrossRefPubMedGoogle Scholar
  10. 10.
    Diamantopoulos PT, Sofotasiou M, Papadopoulou V, Polonyfi K, Iliakis T (2014) Viniou N-A. PARP1-driven apoptosis in chronic lymphocytic leukemia. Biomed Res Int 2014:106713CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Weston VJ, Oldreive CE, Skowronska A, Oscier DG, Pratt G, Dyer MJ et al (2010) The PARP inhibitor olaparib induces significant killing of ATM-deficient lymphoid tumor cells in vitro and in vivo. Blood. 116(22):4578–4587CrossRefPubMedGoogle Scholar
  12. 12.
    Herriott A, Tudhope SJ, Junge G, Rodrigues N, Patterson MJ, Woodhouse L, Lunec J, Hunter JE, Mulligan EA, Cole M, Allinson LM, Wallis JP, Marshall S, Wang E, Curtin NJ, Willmore E (2015) PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget. 6(41):43978–43991CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Orta ML, Höglund A, Calderón-Montaño JM, Domínguez I, Burgos-Morón E, Visnes T, Pastor N, Ström C, López-lázaro M, Helleday T (2014) The PARP inhibitor Olaparib disrupts base excision repair of 5-aza-2′-deoxycytidine lesions. Nucleic Acids Res 42(14):9108–9120CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gaymes TJ, Shall S, MacPherson LJ, Twine NA, Lea NC, Farzaneh F et al (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica. 94(5):638–646CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Diamantopoulos P, Zervakis K, Zervakis P, Sofotasiou M, Vassilakopoulos T, Kotsianidis I et al (2017) Poly (ADP-ribose) polymerase 1 mRNA levels strongly correlate with the prognosis of myelodysplastic syndromes. Blood Cancer J 7(2):e533CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zampieri M, Passananti C, Calabrese R, Perilli M, Corbi N, De Cave F et al (2009) Parp1 localizes within the Dnmt1 promoter and protects its unmethylated state by its enzymatic activity. PLoS One 4(3):e4717CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 114(5):937–951CrossRefPubMedGoogle Scholar
  18. 18.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127(20):2391–2405CrossRefPubMedGoogle Scholar
  19. 19.
    Greenberg P, Cox C, LeBeau MM, Fenaux P, Morel P, Sanz G et al (1998) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89(6):2079–2088 Erratum in Blood;91:1100Google Scholar
  20. 20.
    Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120(12):2454–2465CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Malcovati L, Germing U, Kuendgen A, Della Porta MG, Pascutto C, Invernizzi R, Giagounidis A, Hildebrandt B, Bernasconi P, Knipp S, Strupp C, Lazzarino M, Aul C, Cazzola M (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25(23):3503–3510CrossRefPubMedGoogle Scholar
  22. 22.
    Cheson BD, Greenberg PL, Bennett JM, Lowenberg B, Wijermans PW, Nimer SD, Pinto A, Beran M, de Witte TM, Stone RM, Mittelman M, Sanz GF, Gore SD, Schiffer CA, Kantarjian H (2006) Clinical application and proposal for modification of the International Working Group (IWG) response criteria in myelodysplasia. Blood. 108(2):419–425CrossRefPubMedGoogle Scholar
  23. 23.
    Mawlood SK, Dennany L, Watson N, Pickard BS (2016) The EpiTect Methyl qPCR Assay as novel age estimation method in forensic biology. Forensic Sci Int 264:132–138CrossRefPubMedGoogle Scholar
  24. 24.
    Valencia A, Masala E, Rossi A, Martino A, Sanna A, Buchi F, Canzian F, Cilloni D, Gaidano V, Voso MT, Kosmider O, Fontenay M, Gozzini A, Bosi A, Santini V (2014) Expression of nucleoside-metabolizing enzymes in myelodysplastic syndromes and modulation of response to azacitidine. Leukemia. 28(3):621–628CrossRefPubMedGoogle Scholar
  25. 25.
    Itzykson R, Kosmider O, Cluzeau T, Mansat-De Mas V, Dreyfus F, Beyne-Rauzy O et al (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia. 25(7):1147–1152CrossRefPubMedGoogle Scholar
  26. 26.
    Bejar R, Lord A, Stevenson K, Bar-Natan M, Pérez-Ladaga A, Zaneveld J et al (2014) TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 124(17):2705–2712CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Traina F, Visconte V, Elson P, Tabarroki A, Jankowska AM, Hasrouni E, Sugimoto Y, Szpurka H, Makishima H, O'Keefe CL, Sekeres MA, Advani AS, Kalaycio M, Copelan EA, Saunthararajah Y, Olalla Saad ST, Maciejewski JP, Tiu RV (2014) Impact of molecular mutations on treatment response to DNMT inhibitors in myelodysplasia and related neoplasms. Leukemia. 28(1):78–87CrossRefPubMedGoogle Scholar
  28. 28.
    Miltiades P, Lamprianidou E, Vassilakopoulos TP, Papageorgiou SG, Galanopoulos AG, Kontos CK, Adamopoulos PG, Nakou E, Vakalopoulou S, Garypidou V, Papaioannou M, Hatjiharissi E, Papadaki HA, Spanoudakis E, Pappa V, Scorilas A, Tsatalas C, Kotsianidis I, on behalf of the Hellenic MDS Study Group (2016) The Stat3/5 signaling biosignature in hematopoietic stem/progenitor cells predicts response and outcome in myelodysplastic syndrome patients treated with azacitidine. Clin Cancer Res 22(8):1958–1968CrossRefPubMedGoogle Scholar
  29. 29.
    Itzykson R, Thépot S, Quesnel B, Dreyfus F, Beyne-Rauzy O, Turlure P et al (2011) Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood. 117(2):403–411CrossRefPubMedGoogle Scholar
  30. 30.
    Díez-Campelo M, Lorenzo JI, Itzykson R, Rojas SM, Berthon C, Luño E, Beyne-Rauzy O, Perez-Oteyza J, Vey N, Bargay J, Park S, Cedena T, Bordessoule D, Muñoz JA, Gyan E, Such E, Visanica S, López-Cadenas F, de Botton S, Hernández-Rivas JM, Ame S, Stamatoullas A, Delaunay J, Salanoubat C, Isnard F, Guieze R, Pérez Guallar J, Badiella L, Sanz G, Cañizo C, Fenaux P (2018) Azacitidine improves outcome in higher-risk MDS patients with chromosome 7 abnormalities: a retrospective comparison of GESMD and GFM registries. Br J Haematol 181(3):350–359CrossRefPubMedGoogle Scholar
  31. 31.
    Alhan C, Westers TM, van der Helm LH, Eeltink C, Huls G, Witte BI, Buchi F, Santini V, Ossenkoppele GJ, van de Loosdrecht AA (2014) Absence of aberrant myeloid progenitors by flow cytometry is associated with favorable response to azacitidine in higher risk myelodysplastic syndromes. Cytometry B Clin Cytom 86(3):207–215CrossRefPubMedGoogle Scholar
  32. 32.
    Welch JS, Petti AA, Miller CA, Fronick CC, O’Laughlin M, Fulton RS et al (2016) TP53 and decitabine in acute myeloid leukemia and myelodysplastic syndromes. N Engl J Med 375(21):2023–2036CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Caiafa P, Guastafierro T, Zampieri M (2009) Epigenetics: poly(ADP-ribosyl)ation of PARP-1 regulates genomic methylation patterns. FASEB J 23(3):672–678CrossRefPubMedGoogle Scholar
  34. 34.
    Verdone L, La Fortezza M, Ciccarone F, Caiafa P, Zampieri M, Caserta M (2015) Poly(ADP-Ribosyl) ation affects histone acetylation and transcription. PLoS One 10(12):e0144287CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, Wu W, Goessl C, Runswick S, Conte P (2017) Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med 377(6):523–533CrossRefPubMedGoogle Scholar
  36. 36.
    Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, Roché H, Im YH, Quek RGW, Markova D, Tudor IC, Hannah AL, Eiermann W, Blum JL (2018) Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med 379(8):753–763CrossRefPubMedGoogle Scholar
  37. 37.
    Moore K, Colombo N, Scambia G, Kim BG, Oaknin A, Friedlander M, Lisyanskaya A, Floquet A, Leary A, Sonke GS, Gourley C, Banerjee S, Oza A, González-Martín A, Aghajanian C, Bradley W, Mathews C, Liu J, Lowe ES, Bloomfield R, DiSilvestro P (2018) Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer. N Engl J Med 379(26):2495–2505CrossRefPubMedGoogle Scholar
  38. 38.
    Kristeleit R, Shapiro GI, Burris HA, Oza AM, LoRusso P, Patel MR, Domchek SM, Balmaña J, Drew Y, Chen LM, Safra T, Montes A, Giordano H, Maloney L, Goble S, Isaacson J, Xiao J, Borrow J, Rolfe L, Shapira-Frommer R (2017) A phase I-II study of the oral PARP inhibitor rucaparib in patients with germline BRCA1/2-mutated ovarian carcinoma or other solid tumors. Clin Cancer Res 23(15):4095–4106CrossRefPubMedGoogle Scholar
  39. 39.
    Swisher EM, Lin KK, Oza AM, Scott CL, Giordano H, Sun J, Konecny GE, Coleman RL, Tinker AV, O’Malley DM, Kristeleit RS, Ma L, Bell-McGuinn KM, Brenton JD, Cragun JM, Oaknin A, Ray-Coquard I, Harrell MI, Mann E, Kaufmann SH, Floquet A, Leary A, Harding TC, Goble S, Maloney L, Isaacson J, Allen AR, Rolfe L, Yelensky R, Raponi M, McNeish IA (2017) Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 part 1): an international, multicentre, open-label, phase 2 trial. Lancet Oncol 18(1):75–87CrossRefPubMedGoogle Scholar
  40. 40.
    Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I, Ben-Baruch NE, Marth C, Mądry R, Christensen RD, Berek JS, Dørum A, Tinker AV, du Bois A, González-Martín A, Follana P, Benigno B, Rosenberg P, Gilbert L, Rimel BJ, Buscema J, Balser JP, Agarwal S, Matulonis UA, ENGOT-OV16/NOVA Investigators (2016) Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med 375(22):2154–2164CrossRefPubMedGoogle Scholar
  41. 41.
    Wiggans AJ, Cass GK, Bryant A, Lawrie TA, Morrison J (2015) Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst Rev 5:CD007929Google Scholar
  42. 42.
    Lord CJ, Ashworth A (2017) PARP inhibitors: synthetic lethality in the clinic. Science. 355(6330):1152–1158CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pratt G, Yap C, Oldreive C, Slade D, Bishop R, Griffiths M et al (2017) A multi-centre phase I trial of the PARP inhibitor olaparib in patients with relapsed chronic lymphocytic leukaemia, T-prolymphocytic leukaemia or mantle cell lymphoma. Br J Haematol 182(3):429-433Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Panagiotis T. Diamantopoulos
    • 1
    Email author
  • Christina-Nefeli Kontandreopoulou
    • 1
  • Argiris Symeonidis
    • 2
  • Ioannis Kotsianidis
    • 3
  • Vassiliki Pappa
    • 4
  • Athanasios Galanopoulos
    • 5
  • Theodoros Vassilakopoulos
    • 1
  • Maria Dimou
    • 6
  • Eleni Solomou
    • 2
  • Marie-Christine Kyrtsonis
    • 6
  • Marina Siakantaris
    • 1
  • Maria Angelopoulou
    • 1
  • Alexandra Kourakli
    • 2
  • Sotirios Papageorgiou
    • 4
  • Georgia Christopoulou
    • 2
  • Maria Roumelioti
    • 6
  • Panayiotis Panayiotidis
    • 6
  • Nora-Athina Viniou
    • 1
  • On behalf of the Hellenic MDS Study Group
  1. 1.Hematology Unit, First Department of Internal Medicine, Laikon General HospitalNational and Kapodistrian University of AthensAthensGreece
  2. 2.Department of Internal MedicineUniversity Hospital of PatrasRioGreece
  3. 3.Department of HematologyUniversity Hospital of AlexandroupolisAlexandroupoliGreece
  4. 4.Haematology Division, Second Department of Internal Medicine, Attikon General HospitalNational and Kapodistrian University of AthensAthensGreece
  5. 5.Department of Clinical Hematology‘G. Gennimatas’ District General HospitalAthensGreece
  6. 6.First Department of Propedeutic Medicine, Laikon General HospitalNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations