Annals of Hematology

, Volume 98, Issue 4, pp 979–986 | Cite as

Vascular density and inflammatory infiltrate in primary oral squamous cell carcinoma and after allogeneic hematopoietic stem cell transplantation

  • Roberto Tamma
  • Luisa Limongelli
  • Eugenio Maiorano
  • Domenico Pastore
  • Eliano Cascardi
  • Angela Tempesta
  • Paola Carluccio
  • Mauro G. Mastropasqua
  • Saverio Capodiferro
  • Claudia Covelli
  • Monica Pentenero
  • Tiziana Annese
  • Gianfranco Favia
  • Giorgina Specchia
  • Domenico RibattiEmail author
Original Article


Hematopoietic stem cell transplantation (HSCT) recipients have been reported to have an increased risk of chronic graft versus host disease (cGVHD) and hematological and solid cancers. Oral manifestations are the first signs of cGVHD observed in the majority of patients, and oropharyngeal cancer is the most frequent secondary malignancy occurred after HSCT. In this study, we have evaluated the inflammatory infiltrate cell content and correlated with the vascular density in patients affected by primary oral squamous cell carcinoma (OSCC) from previous healthy controls and OSCC after cGVHD. Results have demonstrated that patients with OSCC after GVHD show a more consistent inflammatory infiltrate as compared with the OSCC ones. In detail, the inflammatory background composed of CD3-positive T cells, tryptase-positive mast cells, CD31-positive endothelial cells, and CD68-positive macrophages may be more pronounced in the setting of GVHD + OSCC than in the control group. By contrast, CD20-positive B cells and CD1a-positive dendritic cells were more abundant in the latter population. Finally, a positive correlation was found as between vascular density and inflammatory cell infiltration in both GVHD + OSCC and OSCC groups. Overall, these results confirm the role played by immune cells in enhancing tumor progression and angiogenesis and suggest a potential therapeutic strategy involving inhibition of recruitment of immune cells to the tumor microenvironment and blockade of pro-tumoral effects and pro-angiogenic functions.


Allogeneic hematopoietic stem cell transplantation Chronic graft versus host disease Inflammatory infiltrate Primary oral squamous cell carcinoma Vascular density 


Author Contributions

All authors have seen and approved the manuscript being submitted.

Funding information

This work was supported in part by Fellowship FIRC-AIRC 1-year fellowship “Laura Bassi” id. 20879 to TA.

Compliance with ethical standards

Full ethical approval and signed informed consent from individual patients were obtained to conduct the study. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Danylesko I, Shimoni A (2018) Second malignancies after hematopoietic stem cell transplantation. Curr Treat Options in Oncol 19(2):9. CrossRefGoogle Scholar
  2. 2.
    Qian L, Dima D, Berce C, Liu Y, Rus I, Raduly LZ, Liu Y, Petrushev B, Berindan-Neagoe I, Irimie A, Tanase A, Jurj A, Shen J, Tomuleasa C (2018) Protein dysregulation in graft versus host disease. Oncotarget 9(1):1483–1491. Google Scholar
  3. 3.
    Dander E, Balduzzi A, Zappa G, Lucchini G, Perseghin P, Andre V et al (2009) Interleukin-17-producing T-helper cells as new potential player mediating graft-versus-host disease in patients undergoing allogeneic stem-cell transplantation. Transplantation 88(11):1261–1272. CrossRefGoogle Scholar
  4. 4.
    Zeiser R, Sarantopoulos S, Blazar BR (2018) B-cell targeting in chronic graft-versus-host disease. Blood 131(13):1399–1405. CrossRefGoogle Scholar
  5. 5.
    Majhail NS, Brazauskas R, Rizzo JD, Sobecks RM, Wang Z, Horowitz MM, Bolwell B, Wingard JR, Socie G (2011) Secondary solid cancers after allogeneic hematopoietic cell transplantation using busulfan-cyclophosphamide conditioning. Blood 117(1):316–322. CrossRefGoogle Scholar
  6. 6.
    Inamoto Y, Shah NN, Savani BN, Shaw BE, Abraham AA, Ahmed IA, Akpek G, Atsuta Y, Baker KS, Basak GW, Bitan M, DeFilipp Z, Gregory TK, Greinix HT, Hamadani M, Hamilton BK, Hayashi RJ, Jacobsohn DA, Kamble RT, Kasow KA, Khera N, Lazarus HM, Malone AK, Lupo-Stanghellini MT, Margossian SP, Muffly LS, Norkin M, Ramanathan M, Salooja N, Schoemans H, Wingard JR, Wirk B, Wood WA, Yong A, Duncan CN, Flowers MED, Majhail NS (2015) Secondary solid cancer screening following hematopoietic cell transplantation. Bone Marrow Transplant 50(8):1013–1023. CrossRefGoogle Scholar
  7. 7.
    Atsuta Y, Suzuki R, Yamashita T, Fukuda T, Miyamura K, Taniguchi S, Iida H, Uchida T, Ikegame K, Takahashi S, Kato K, Kawa K, Nagamura-Inoue T, Morishima Y, Sakamaki H, Kodera Y, Japan Society for Hematopoietic Cell Transplantation (2014) Continuing increased risk of oral/esophageal cancer after allogeneic hematopoietic stem cell transplantation in adults in association with chronic graft-versus-host disease. Ann Oncol 25(2):435–441. CrossRefGoogle Scholar
  8. 8.
    Demarosi F, Lodi G, Carrassi A, Soligo D, Sardella A (2005) Oral malignancies following HSCT: graft versus host disease and other risk factors. Oral Oncol 41(9):865–877. CrossRefGoogle Scholar
  9. 9.
    Adhikari J, Sharma P, Bhatt VR (2015) Risk of secondary solid malignancies after allogeneic hematopoietic stem cell transplantation and preventive strategies. Future Oncol 11(23):3175–3185. CrossRefGoogle Scholar
  10. 10.
    Gallagher G, Forrest DL (2007) Second solid cancers after allogeneic hematopoietic stem cell transplantation. Cancer 109(1):84–92. CrossRefGoogle Scholar
  11. 11.
    Leisenring W, Friedman DL, Flowers ME, Schwartz JL, Deeg HJ (2006) Nonmelanoma skin and mucosal cancers after hematopoietic cell transplantation. J Clin Oncol 24(7):1119–1126. CrossRefGoogle Scholar
  12. 12.
    Rizzo JD, Curtis RE, Socie G, Sobocinski KA, Gilbert E, Landgren O, Travis LB, Travis WD, Flowers MED, Friedman DL, Horowitz MM, Wingard JR, Deeg HJ (2009) Solid cancers after allogeneic hematopoietic cell transplantation. Blood 113(5):1175–1183. CrossRefGoogle Scholar
  13. 13.
    Noce CW, Gomes A, Copello A, Barbosa RD, Sant’anna S, Moreira MC et al (2011) Oral involvement of chronic graft-versus-host disease in hematopoietic stem cell transplant recipients. Gen Dent 59(6):458–462 quiz 463–454Google Scholar
  14. 14.
    Imanguli MM, Pavletic SZ, Guadagnini JP, Brahim JS, Atkinson JC (2006) Early and late features of chronic graft-versus-host disease of oral mucosa: review of available therapies. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101(2):175–183. CrossRefGoogle Scholar
  15. 15.
    Gomes AO, Torres SR, Maiolino A, Santos CW, Junior AS, Correa ME et al (2014) Not available. Rev Bras Hematol Hemoter 36(1):43–49. CrossRefGoogle Scholar
  16. 16.
    Weng X, Xing Y, Cheng B (2017) Multiple and recurrent squamous cell carcinoma of the oral cavity after graft-versus-host disease. J Oral Maxillofac Surg 75(9):1899–1905. CrossRefGoogle Scholar
  17. 17.
    de Araujo RL, Lyko Kde F, Funke VA, Torres-Pereira CC (2014) Oral cancer after prolonged immunosuppression for multiorgan chronic graft-versus-host disease. Rev Bras Hematol Hemoter 36(1):65–68. CrossRefGoogle Scholar
  18. 18.
    Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86(3):353–364CrossRefGoogle Scholar
  19. 19.
    Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186. CrossRefGoogle Scholar
  20. 20.
    Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313(5795):1960–1964. CrossRefGoogle Scholar
  21. 21.
    Tamma R, Guidolin D, Annese T, Tortorella C, Ruggieri S, Rega S, Zito FA, Nico B, Ribatti D (2017) Spatial distribution of mast cells and macrophages around tumor glands in human breast ductal carcinoma. Exp Cell Res 359(1):179–184. CrossRefGoogle Scholar
  22. 22.
    Penack O, Socie G, van den Brink MR (2011) The importance of neovascularization and its inhibition for allogeneic hematopoietic stem cell transplantation. Blood 117(16):4181–4189. CrossRefGoogle Scholar
  23. 23.
    Laishram D, Rao K, Devi HSU, Priya NS, Smitha T, Sheethal HS (2017) Mast cells and angiogenesis in malignant and premalignant oral lesions: an immunohistochemical study. J Oral Maxillofac Pathol 21(2):229–238. CrossRefGoogle Scholar
  24. 24.
    Stasikowska-Kanicka O, Wagrowska-Danilewicz M, Danilewicz M (2017) Association of infiltrating cells with microvessel density in oral squamous cell carcinoma. Pol J Pathol 68(1):40–48. CrossRefGoogle Scholar
  25. 25.
    Ringden O, Brazauskas R, Wang Z, Ahmed I, Atsuta Y, Buchbinder D et al (2014) Second solid cancers after allogeneic hematopoietic cell transplantation using reduced-intensity conditioning. Biol Blood Marrow Transplant 20(11):1777–1784. CrossRefGoogle Scholar
  26. 26.
    Sloand EM, Pfannes L, Ling C, Feng X, Jasek M, Calado R, Tucker ZCG, Hematti P, Maciejewski J, Dunbar C, Barrett J, Young N (2010) Graft-versus-host disease: role of inflammation in the development of chromosomal abnormalities of keratinocytes. Biol Blood Marrow Transplant 16(12):1665–1673. CrossRefGoogle Scholar
  27. 27.
    Beachy PA, Karhadkar SS, Berman DM (2004) Tissue repair and stem cell renewal in carcinogenesis. Nature 432(7015):324–331. CrossRefGoogle Scholar
  28. 28.
    Mashhadiabbas F, Fayazi-Boroujeni M (2017) Correlation of vascularization and inflammation with severity of oral leukoplakia. Iran J Pathol 12(3):225–230Google Scholar
  29. 29.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. CrossRefGoogle Scholar
  30. 30.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. CrossRefGoogle Scholar
  31. 31.
    Ribatti D, Crivellato E (2009) Immune cells and angiogenesis. J Cell Mol Med 13(9A):2822–2833. CrossRefGoogle Scholar
  32. 32.
    Ribatti D, Vacca A (2008) Overview of angiogenesis during tumor growth. In: Figg WD, Folkman J (eds) Angiogenesis. Springer, BostonGoogle Scholar
  33. 33.
    Nelson BH (2010) CD20+ B cells: the other tumor-infiltrating lymphocytes. J Immunol 185(9):4977–4982. CrossRefGoogle Scholar
  34. 34.
    Shen M, Sun Q, Wang J, Pan W, Ren X (2016) Positive and negative functions of B lymphocytes in tumors. Oncotarget 7(34):55828–55839. CrossRefGoogle Scholar
  35. 35.
    Yang C, Lee H, Pal S, Jove V, Deng J, Zhang W, Hoon DSB, Wakabayashi M, Forman S, Yu H (2013) B cells promote tumor progression via STAT3 regulated-angiogenesis. PLoS One 8(5):e64159. CrossRefGoogle Scholar
  36. 36.
    Mor F, Quintana FJ, Cohen IR (2004) Angiogenesis-inflammation cross-talk: vascular endothelial growth factor is secreted by activated T cells and induces Th1 polarization. J Immunol 172(7):4618–4623CrossRefGoogle Scholar
  37. 37.
    Carvalho MI, Pires I, Dias M, Prada J, Gregorio H, Lobo L et al (2015) Intratumoral CD3+ T-lymphocytes immunoexpression and its association with c-Kit, angiogenesis, and overall survival in malignant canine mammary tumors. Anal Cell Pathol (Amst) 2015:920409. Google Scholar
  38. 38.
    Yu JL, Rak JW (2003) Host microenvironment in breast cancer development: inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Res 5(2):83–88CrossRefGoogle Scholar
  39. 39.
    Bosisio D, Ronca R, Salvi V, Presta M, Sozzani S (2018) Dendritic cells in inflammatory angiogenesis and lymphangiogenesis. Curr Opin Immunol 53:180–186. CrossRefGoogle Scholar
  40. 40.
    Blois SM, Piccioni F, Freitag N, Tirado-Gonzalez I, Moschansky P, Lloyd R et al (2014) Dendritic cells regulate angiogenesis associated with liver fibrogenesis. Angiogenesis 17(1):119–128. CrossRefGoogle Scholar
  41. 41.
    Qu Z, Liebler JM, Powers MR, Galey T, Ahmadi P, Huang XN, Ansel JC, Butterfield JH, Planck SR, Rosenbaum JT (1995) Mast cells are a major source of basic fibroblast growth factor in chronic inflammation and cutaneous hemangioma. Am J Pathol 147(3):564–573Google Scholar
  42. 42.
    Lee HS, Myers A, Kim J (2009) Vascular endothelial growth factor drives autocrine epithelial cell proliferation and survival in chronic rhinosinusitis with nasal polyposis. Am J Respir Crit Care Med 180(11):1056–1067. CrossRefGoogle Scholar
  43. 43.
    Cimpean AM, Tamma R, Ruggieri S, Nico B, Toma A, Ribatti D (2017) Mast cells in breast cancer angiogenesis. Crit Rev Oncol Hematol 115:23–26. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roberto Tamma
    • 1
  • Luisa Limongelli
    • 2
  • Eugenio Maiorano
    • 3
  • Domenico Pastore
    • 4
  • Eliano Cascardi
    • 3
  • Angela Tempesta
    • 2
  • Paola Carluccio
    • 4
  • Mauro G. Mastropasqua
    • 3
  • Saverio Capodiferro
    • 2
  • Claudia Covelli
    • 3
  • Monica Pentenero
    • 5
  • Tiziana Annese
    • 1
  • Gianfranco Favia
    • 2
  • Giorgina Specchia
    • 4
  • Domenico Ribatti
    • 1
    Email author
  1. 1.Department of Basic Medical Sciences, Neurosciences, and Sensory OrgansUniversity of Bari Medical SchoolBariItaly
  2. 2.Department of Interdisciplinary Medicine, Section of OdontostomatologyUniversity of Bari Medical SchoolBariItaly
  3. 3.Department of Emergency and Transplantation, Pathology SectionUniversity of Bari Medical SchoolBariItaly
  4. 4.Department of Emergency and Transplantation, Hematology SectionUniversity of Bari Medical SchoolBariItaly
  5. 5.Oral Medicine and Oral Oncology Unit, Department of OncologyUniversity of Turin Medical SchoolTurinItaly

Personalised recommendations