Annals of Hematology

, Volume 98, Issue 4, pp 869–879 | Cite as

Next-generation sequencing with a 54-gene panel identified unique mutational profile and prognostic markers in Chinese patients with myelofibrosis

  • Harinder Gill
  • Ho-Wan Ip
  • Rita Yim
  • Wing-Fai Tang
  • Herbert H. Pang
  • Paul Lee
  • Garret M. K. Leung
  • Jamilla Li
  • Karen Tang
  • Jason C. C. So
  • Rock Y. Y. Leung
  • Jun Li
  • Gianni Panagioutou
  • Clarence C. K. Lam
  • Yok-Lam KwongEmail author
Original Article


Current prognostication in myelofibrosis (MF) is based on clinicopathological features and mutations in a limited number of driver genes. The impact of other genetic mutations remains unclear. We evaluated for mutations in a myeloid panel of 54 genes using next-generation sequencing. Multivariate Cox regression analysis was used to determine prognostic factors for overall survival (OS) and leukaemia-free survival (LFS), based on mutations of these genes and relevant clinical and haematological features. One hundred and one patients (primary MF, N = 70; secondary MF, N = 31) with a median follow-up of 49 (1–256) months were studied. For the entire cohort, inferior OS was associated with male gender (P = 0.04), age > 65 years (P = 0.04), haemoglobin < 10 g/dL (P = 0.001), CUX1 mutation (P = 0.003) and TP53 mutation (P = 0.049); and inferior LFS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.04) and SRSF2 mutations (P = 0.008). In primary MF, inferior OS was associated with male gender (P = 0.03), haemoglobin < 10 g/dL (P = 0.002), platelet count < 100 × 109/L (P = 0.02), TET2 mutation (P = 0.01) and CUX1 mutation (P = 0.01); and inferior LFS was associated with haemoglobin < 10 g/dL (P = 0.02), platelet count < 100 × 109/L (P = 0.02), TET2 mutations (P = 0.01) and CUX1 mutations (P = 0.04). These results showed that clinical and haematological features and genetic mutations should be considered in MF prognostication.


Myelofibrosis Primary Secondary Next-generation sequencing Prognosis 


Author contributions

Harinder Gill: treated the patients, analysed the data, wrote and approved the manuscript.

Ho-Wan Ip: performed the experiments, wrote and approved the manuscript.

Rita Yim: performed the experiments, wrote and approved the manuscript.

Wing-Fai Tang: performed the experiments and approved the manuscript.

Herbert H. Pang: performed the experiments and approved the manuscript.

Paul Lee: performed the experiments and approved the manuscript.

Garret M.K. Leung: treated the patients and approved the manuscript.

Jamilla Li: treated the patients and approved the manuscript.

Karen Tang: treated the patients and approved the manuscript.

Jason C.C. So: performed the experiments and approved the manuscript.

Rock Y.Y Leung: performed the experiments and approved the manuscript.

Jun Li: performed the experiments and approved the manuscript.

Gianni Panagioutou: performed the experiments and approved the manuscript.

Clarence C.K. Lam: performed histopathological analysis and approved the manuscript.

Yok-Lam Kwong: treated the patients, wrote and approved the manuscript.

Compliance with ethical standards

Patients gave informed consent to treatment. This study was approved by the institution review board of the Hong Kong West Cluster and the University of Hong Kong, and was conducted according to the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

277_2018_3563_MOESM1_ESM.docx (20 kb)
Supplemental file 1 (DOCX 19 kb)
277_2018_3563_MOESM2_ESM.docx (16 kb)
Supplemental file 2 (DOCX 16 kb)
277_2018_3563_MOESM3_ESM.docx (17 kb)
Supplemental file 3 (DOCX 17 kb)
277_2018_3563_MOESM4_ESM.xlsx (40 kb)
Supplemental file 4 (XLSX 40 kb)
277_2018_3563_MOESM5_ESM.docx (25 kb)
Supplemental file 5 (DOCX 24 kb)
277_2018_3563_MOESM6_ESM.docx (25 kb)
Supplemental file 6 (DOCX 24 kb)
277_2018_3563_MOESM7_ESM.docx (24 kb)
Supplemental file 7 (DOCX 24 kb)
277_2018_3563_MOESM8_ESM.docx (24 kb)
Supplemental file 8 (DOCX 24 kb)
277_2018_3563_MOESM9_ESM.docx (15 kb)
Supplemental file 9 (DOCX 15 kb)
277_2018_3563_MOESM10_ESM.docx (18 kb)
Supplemental file 10 (DOCX 17 kb)


  1. 1.
    Cervantes F, Dupriez B, Pereira A, Passamonti F, Reilly JT, Morra E, Vannucchi AM, Mesa RA, Demory JL, Barosi G, Rumi E, Tefferi A (2009) New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 113(13):2895–2901CrossRefGoogle Scholar
  2. 2.
    Passamonti F, Giorgino T, Mora B, Guglielmelli P, Rumi E, Maffioli M, Rambaldi A, Caramella M, Komrokji R, Gotlib J, Kiladjian JJ, Cervantes F, Devos T, Palandri F, De Stefano V, Ruggeri M, Silver RT, Benevolo G, Albano F, Caramazza D, Merli M, Pietra D, Casalone R, Rotunno G, Barbui T, Cazzola M, Vannucchi AM (2017) A clinical-molecular prognostic model to predict survival in patients with post polycythemia vera and post essential thrombocythemia myelofibrosis. Leukemia 31(12):2726–2731CrossRefGoogle Scholar
  3. 3.
    Patel KP, Newberry KJ, Luthra R, Jabbour E, Pierce S, Cortes J, Singh R, Mehrotra M, Routbort MJ, Luthra M, Manshouri T, Santos FP, Kantarjian H, Verstovsek S (2015) Correlation of mutation profile and response in patients with myelofibrosis treated with ruxolitinib. Blood 126(6):790–797CrossRefGoogle Scholar
  4. 4.
    Tefferi A, Guglielmelli P, Lasho TL, Rotunno G, Finke C, Mannarelli C, Belachew AA, Pancrazzi A, Wassie EA, Ketterling RP, Hanson CA, Pardanani A, Vannucchi AM (2014) CALR and ASXL1 mutations-based molecular prognostication in primary myelofibrosis: an international study of 570 patients. Leukemia 28(7):1494–1500CrossRefGoogle Scholar
  5. 5.
    Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez-Trillos A, Casetti I, Colomer D, Pieri L, Pratcorona M, Rotunno G, Sant’Antonio E, Bellini M, Cavalloni C, Mannarelli C, Milanesi C, Boveri E, Ferretti V, Astori C, Rosti V, Cervantes F, Barosi G, Vannucchi AM, Cazzola M, Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators (2014) Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood 124(7):1062–1069CrossRefGoogle Scholar
  6. 6.
    Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K, Reiter A, Duncombe A, Fanelli T, Pietra D, Rumi E, Finke C, Gangat N, Ketterling RP, Knudson RA, Hanson CA, Bosi A, Pereira A, Manfredini R, Cervantes F, Barosi G, Cazzola M, Cross NC, Vannucchi AM, Tefferi A (2014) The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 28(9):1804–1810CrossRefGoogle Scholar
  7. 7.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20):2391–2405CrossRefGoogle Scholar
  8. 8.
    Barosi G, Mesa RA, Thiele J, Cervantes F, Campbell PJ, Verstovsek S, Dupriez B, Levine RL, Passamonti F, Gotlib J, Reilly JT, Vannucchi AM, Hanson CA, Solberg LA, Orazi A, Tefferi A, International Working Group for Myelofibrosis Research and Treatment (IWG-MRT) (2008) Proposed criteria for the diagnosis of post-polycythemia vera and post-essential thrombocythemia myelofibrosis: a consensus statement from the International Working Group for Myelofibrosis Research and Treatment. Leukemia 22(2):437–438CrossRefGoogle Scholar
  9. 9.
    Passamonti F, Cervantes F, Vannucchi AM, Morra E, Rumi E, Pereira A, Guglielmelli P, Pungolino E, Caramella M, Maffioli M, Pascutto C, Lazzarino M, Cazzola M, Tefferi A (2010) A dynamic prognostic model to predict survival in primary myelofibrosis: a study by the IWG-MRT (International Working Group for Myeloproliferative Neoplasms Research and Treatment). Blood 115(9):1703–1708CrossRefGoogle Scholar
  10. 10.
    Gangat N, Caramazza D, Vaidya R, George G, Begna K, Schwager S, Van Dyke D, Hanson C, Wu W, Pardanani A, Cervantes F, Passamonti F, Tefferi A (2011) DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29(4):392–397CrossRefGoogle Scholar
  11. 11.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120CrossRefGoogle Scholar
  12. 12.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303CrossRefGoogle Scholar
  13. 13.
    Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22(3):568–576CrossRefGoogle Scholar
  14. 14.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079CrossRefGoogle Scholar
  15. 15.
    Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25(21):2865–2871CrossRefGoogle Scholar
  16. 16.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164CrossRefGoogle Scholar
  17. 17.
    1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA, Abecasis GR (2015) A global reference for human genetic variation. Nature 526(7571):68–74CrossRefGoogle Scholar
  18. 18.
    Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, Jang W, Katz K, Ovetsky M, Riley G, Sethi A, Tully R, Villamarin-Salomon R, Rubinstein W, Maglott DR (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44(D1):D862–D868CrossRefGoogle Scholar
  19. 19.
    Liu X, Wu C, Li C, Boerwinkle E (2016) dbNSFP v3.0: a one-stop database of functional predictions and annotations for human nonsynonymous and splice-site SNVs. Hum Mutat 37(3):235–241CrossRefGoogle Scholar
  20. 20.
    Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, Stefancsik R, Harsha B, Kok CY, Jia M, Jubb H, Sondka Z, Thompson S, De T, Campbell PJ (2017) COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res 45(D1):D777–DD83CrossRefGoogle Scholar
  21. 21.
    Sukhai MA, Craddock KJ, Thomas M, Hansen AR, Zhang T, Siu L, Bedard P, Stockley TL, Kamel-Reid S (2016) A classification system for clinical relevance of somatic variants identified in molecular profiling of cancer. Genet Med 18(2):128–136CrossRefGoogle Scholar
  22. 22.
    Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19(9):1639–1645CrossRefGoogle Scholar
  23. 23.
    Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, Bagienski K, Kubesova B, Pietra D, Gisslinger B, Milanesi C, Jäger R, Chen D, Berg T, Schalling M, Schuster M, Bock C, Constantinescu SN, Cazzola M, Kralovics R (2016) Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood 127(3):325–332CrossRefGoogle Scholar
  24. 24.
    Bodian DL, McCutcheon JN, Kothiyal P, Huddleston KC, Iyer RK, Vockley JG, Niederhuber JE (2014) Germline variation in cancer-susceptibility genes in a healthy, ancestrally diverse cohort: implications for individual genome sequencing. PLoS One 9(4):e94554CrossRefGoogle Scholar
  25. 25.
    Tefferi A (2018). Primary myelofibrosis: 2019 update on diagnosis, risk-stratification, and management. Am J HematolGoogle Scholar
  26. 26.
    Vainchenker W, Kralovics R (2017) Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood 129(6):667–679CrossRefGoogle Scholar
  27. 27.
    Makishima H, Yoshida K, Nguyen N, Przychodzen B, Sanada M, Okuno Y, Ng KP, Gudmundsson KO, Vishwakarma BA, Jerez A, Gomez-Segui I, Takahashi M, Shiraishi Y, Nagata Y, Guinta K, Mori H, Sekeres MA, Chiba K, Tanaka H, Muramatsu H, Sakaguchi H, Paquette RL, McDevitt MA, Kojima S, Saunthararajah Y, Miyano S, Shih LY, Du Y, Ogawa S, Maciejewski JP (2013) Somatic SETBP1 mutations in myeloid malignancies. Nat Genet 45(8):942–946CrossRefGoogle Scholar
  28. 28.
    Laborde RR, Patnaik MM, Lasho TL, Finke CM, Hanson CA, Knudson RA, Ketterling RP, Pardanani A, Tefferi A (2013) SETBP1 mutations in 415 patients with primary myelofibrosis or chronic myelomonocytic leukemia: independent prognostic impact in CMML. Leukemia 27(10):2100–2102CrossRefGoogle Scholar
  29. 29.
    Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, Kober C, Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium, Green AR, Massie CE, Nangalia J, Lempidaki S, Döhner H, Döhner K, Bray SJ, McDermott U, Papaemmanuil E, Campbell PJ, Adams DJ (2014) Inactivating CUX1 mutations promote tumorigenesis. Nat Genet 46(1):33–38CrossRefGoogle Scholar
  30. 30.
    Thoennissen NH, Lasho T, Thoennissen GB, Ogawa S, Tefferi A, Koeffler HP (2011) Novel CUX1 missense mutation in association with 7q- at leukemic transformation of MPN. Am J Hematol 86(8):703–705CrossRefGoogle Scholar
  31. 31.
    Ding Y, Harada Y, Imagawa J, Kimura A, Harada H (2009) AML1/RUNX1 point mutation possibly promotes leukemic transformation in myeloproliferative neoplasms. Blood 114(25):5201–5205CrossRefGoogle Scholar
  32. 32.
    Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, McMichael JF, Schmidt HK, Yellapantula V, Miller CA, Ozenberger BA, Welch JS, Link DC, Walter MJ, Mardis ER, Dipersio JF, Chen F, Wilson RK, Ley TJ, Ding L (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20(12):1472–1478CrossRefGoogle Scholar
  33. 33.
    Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, Kantarjian H, Raza A, Levine RL, Neuberg D, Ebert BL (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364(26):2496–2506CrossRefGoogle Scholar
  34. 34.
    Grinfeld J, Nangalia J, Green AR (2017) Molecular determinants of pathogenesis and clinical phenotype in myeloproliferative neoplasms. Haematologica 102(1):7–17CrossRefGoogle Scholar
  35. 35.
    Liu Y, Easton J, Shao Y, Maciaszek J, Wang Z, Wilkinson MR, McCastlain K, Edmonson M, Pounds SB, Shi L, Zhou X, Ma X, Sioson E, Li Y, Rusch M, Gupta P, Pei D, Cheng C, Smith MA, Auvil JG, Gerhard DS, Relling MV, Winick NJ, Carroll AJ, Heerema NA, Raetz E, Devidas M, Willman CL, Harvey RC, Carroll WL, Dunsmore KP, Winter SS, Wood BL, Sorrentino BP, Downing JR, Loh ML, Hunger SP, Zhang J, Mullighan CG (2017) The genomic landscape of pediatric and young adult T-lineage acute lymphoblastic leukemia. Nat Genet 49(8):1211–1218CrossRefGoogle Scholar
  36. 36.
    King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, Sandy P, Shen SS, Ferrando A, Aifantis I (2013) The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153(7):1552–1566CrossRefGoogle Scholar
  37. 37.
    Pine SR, Guo Q, Yin C, Jayabose S, Druschel CM, Sandoval C (2007) Incidence and clinical implications of GATA1 mutations in newborns with Down syndrome. Blood 110(6):2128–2131CrossRefGoogle Scholar
  38. 38.
    Yamazaki H, Suzuki M, Otsuki A, Shimizu R, Bresnick EH, Engel JD, Yamamoto M (2014) A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell 25(4):415–427CrossRefGoogle Scholar
  39. 39.
    Grossmann V, Tiacci E, Holmes AB, Kohlmann A, Martelli MP, Kern W, Spanhol-Rosseto A, Klein HU, Dugas M, Schindela S, Trifonov V, Schnittger S, Haferlach C, Bassan R, Wells VA, Spinelli O, Chan J, Rossi R, Baldoni S, De Carolis L, Goetze K, Serve H, Peceny R, Kreuzer KA, Oruzio D, Specchia G, Di Raimondo F, Fabbiano F, Sborgia M, Liso A, Farinelli L, Rambaldi A, Pasqualucci L, Rabadan R, Haferlach T, Falini B (2011) Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype. Blood 118(23):6153–6163CrossRefGoogle Scholar
  40. 40.
    Weng AP, Ferrando AA, Lee W, Morris JP 4th, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271CrossRefGoogle Scholar
  41. 41.
    Ernst T, Chase A, Zoi K, Waghorn K, Hidalgo-Curtis C, Score J, Jones A, Grand F, Reiter A, Hochhaus A, Cross NC (2010) Transcription factor mutations in myelodysplastic/myeloproliferative neoplasms. Haematologica 95(9):1473–1480CrossRefGoogle Scholar
  42. 42.
    Tefferi A, Guglielmelli P, Larson DR, Finke C, Wassie EA, Pieri L, Gangat N, Fjerza R, Belachew AA, Lasho TL, Ketterling RP, Hanson CA, Rambaldi A, Finazzi G, Thiele J, Barbui T, Pardanani A, Vannucchi AM (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124(16):2507–2513CrossRefGoogle Scholar
  43. 43.
    Rozovski U, Verstovsek S, Manshouri T, Dembitz V, Bozinovic K, Newberry K, Zhang Y, Bove JE 4th, Pierce S, Kantarjian H, Estrov Z (2017) An accurate, simple prognostic model consisting of age, JAK2, CALR, and MPL mutation status for patients with primary myelofibrosis. Haematologica 102(1):79–84CrossRefGoogle Scholar
  44. 44.
    Passamonti F, Mora B, Giorgino T, Guglielmelli P, Cazzola M, Maffioli M, Rambaldi A, Caramella M, Komrokji R, Gotlib J, Kiladjian JJ, Cervantes F, Devos T, Palandri F, De Stefano V, Ruggeri M, Silver R, Benevolo G, Albano F, Caramazza D, Rumi E, Merli M, Pietra D, Casalone R, Barbui T, Pieri L, Vannucchi AM (2017) Driver mutations’ effect in secondary myelofibrosis: an international multicenter study based on 781 patients. Leukemia 31(4):970–973CrossRefGoogle Scholar
  45. 45.
    Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, Ketterling RP, Rotunno G, Knudson RA, Susini MC, Laborde RR, Spolverini A, Pancrazzi A, Pieri L, Manfredini R, Tagliafico E, Zini R, Jones A, Zoi K, Reiter A, Duncombe A, Pietra D, Rumi E, Cervantes F, Barosi G, Cazzola M, Cross NC, Tefferi A (2013) Mutations and prognosis in primary myelofibrosis. Leukemia 27(9):1861–1869CrossRefGoogle Scholar
  46. 46.
    Guglielmelli P, Lasho TL, Rotunno G, Mudireddy M, Mannarelli C, Nicolosi M, Pacilli A, Pardanani A, Rumi E, Rosti V, Hanson CA, Manelli F, Ketterling RP, Gangat N, Rambaldi A, Passamonti F, Barosi G, Barbui T, Cazzola M, Vannucchi AM, Tefferi A (2017) MIPSS70: mutation-enhanced international prognostic score system for transplantation-age patients with primary myelofibrosis. J Clin Oncol 36:310–318CrossRefGoogle Scholar
  47. 47.
    Tefferi A, Guglielmelli P, Pardanani A, Vannucchi AM (2018) Myelofibrosis treatment algorithm. Blood Cancer J 8:72CrossRefGoogle Scholar
  48. 48.
    Tefferi A, Guglielmelli P, Nicolosi M, Mannelli F, Murireddy M, Bartalucci N, Finke CM, Lasho TL, Hanson CA, Ketterling RP, Begna KH, Gangat N, Pardanani A, Vannucchi AM (2018) GIPSS: genetically inspired prognostic scoring system for primary myelofibrosis. Leukemia 32:1631–1642CrossRefGoogle Scholar
  49. 49.
    Rotunno G, Pacilli A, Artusi V, Rumi E, Maffioli M, Delaini F, Brogi G, Fanelli T, Pancrazzi A, Pietra D, Bernardis I, Belotti C, Pieri L, Sant’Antonio E, Salmoiraghi S, Cilloni D, Rambaldi A, Passamonti F, Barbui T, Manfredini R, Cazzola M, Tagliafico E, Vannucchi AM, Guglielmelli P (2016) Epidemiology and clinical relevance of mutations in postpolycythemia vera and postessential thrombocythemia myelofibrosis: a study on 359 patients of the AGIMM group. Am J Hematol 91(7):681–686CrossRefGoogle Scholar
  50. 50.
    An N, Khan S, Imgruet MK, Gurbuxani SK, Konecki SN, Burgess MR, McNerney ME (2018) Gene dosage effect of CUX1 in a murine model disrupts HSC homeostasis and controls the severity and mortality of MDS. Blood 131(24):2682–2697CrossRefGoogle Scholar
  51. 51.
    Tefferi A, Lim KH, Abdel-Wahab O, Lasho TL, Patel J, Patnaik MM, Hanson CA, Pardanani A, Gilliland DG, Levine RL (2009) TET2 mutations and their clinical correlates in polycythemia vera, essential thrombocythemia and myelofibrosis. Leukemia 23(5):905–911CrossRefGoogle Scholar
  52. 52.
    Tefferi A, Lim KH, Levine R (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 361(11):1117CrossRefGoogle Scholar
  53. 53.
    Harutyunyan A, Klampfl T, Cazzola M, Kralovics R (2011) p53 lesions in leukemic transformation. N Engl J Med 364(5):488–490CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Harinder Gill
    • 1
  • Ho-Wan Ip
    • 2
  • Rita Yim
    • 1
  • Wing-Fai Tang
    • 2
  • Herbert H. Pang
    • 3
  • Paul Lee
    • 1
  • Garret M. K. Leung
    • 1
  • Jamilla Li
    • 1
  • Karen Tang
    • 1
  • Jason C. C. So
    • 2
  • Rock Y. Y. Leung
    • 2
  • Jun Li
    • 4
  • Gianni Panagioutou
    • 5
    • 6
  • Clarence C. K. Lam
    • 2
  • Yok-Lam Kwong
    • 1
    • 7
    Email author
  1. 1.Department of MedicineThe University of Hong KongHong KongChina
  2. 2.Department of PathologyQueen Mary HospitalHong KongChina
  3. 3.School of Public HealthThe University of Hong KongHong KongChina
  4. 4.The Department of Infectious Diseases and Public HealthCity University of Hong KongHong KongChina
  5. 5.Systems Biology Group, School of Biological SciencesThe University of Hong KongHong KongChina
  6. 6.Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll InstituteJenaGermany
  7. 7.Department of Medicine, Professorial BlockQueen Mary HospitalHong KongChina

Personalised recommendations