Annals of Hematology

, Volume 98, Issue 1, pp 101–109 | Cite as

Cardiovascular disease in chronic myelomonocytic leukemia: do monocytosis and chronic inflammation predispose to accelerated atherosclerosis?

  • Mette Vestergaard Elbæk
  • Anders Lindholm Sørensen
  • Hans Carl Hasselbalch
Original Article


Patients with chronic myelomonocytic leukemia (CMML) have monocytosis and likely a state of chronic inflammation. Both have been associated with an increased risk of atherosclerosis. The aim of the study was to test the hypothesis that CMML patients are at increased risk of developing cardiovascular disease (CVD) due to persistent monocytosis and sustained chronic inflammation. In a retrospective cohort study, we assessed hazards for cardiovascular events after diagnosis in 112 CMML patients and 231 chronic lymphocytic leukemia (CLL) patients. Analyses were carried out on restricted cohorts (CMML = 84, CLL = 186), excluding patients with a prior history of CVD, as well as on unrestricted cohorts. In the restricted cohorts, a significant effect of cardiovascular event occurrence did not remain after adjustment (HR 2.49, 95% CI 0.94–6.60). In unrestricted cohorts, we found a more than twofold increased rate of cardiovascular events in CMML (HR 2.34, 95% CI 1.05–5.20). Our results indicate an increased risk of CVD after the diagnosis in CMML patients.


Chronic myelomonocytic leukemia MPN/MDS Cardiovascular disease Atherosclerosis Chronic inflammation 



Acute myocardial infarction


Acute myeloid leukemia


Clonal hematopoiesis of indeterminate potential


Confidence interval


Chronic lymphocytic leukemia


Chronic myelomonocytic leukemia


Diagnosis-related group


Cardiovascular disease


Type II diabetes


Hazard ratio


Ischemic heart disease


Myelodysplastic syndrome


Myeloproliferative neoplasm


Nitric oxide


Odds ratio


Systematized Nomenclature of Medicine – Clinical Terms


Transitory cerebral ischemia



Ole Weis Bjerrum, Department of Hematology, Rigshospitalet, Copenhagen, and Daniel El Fassi, Department of Hematology, Herlev Hospital, Herlev, made data collection possible from the respective departments.

Authors’ contribution

HCH and MVE provided the conception and design of the study, acquisition and interpretation of data, and drafting and revision of the article. ALS provided the acquisition of data, statistical assistance, and revision of the article. All authors gave their final approval of the version to be submitted.

Compliance with ethical standards

The study was reported to The Danish Data Protection Agency, approved by The Danish Health and Medicines Authority, and it was conducted in accordance with the ethical principles stated in the Declaration of Helsinki.

Conflict of interest

ALS has received a grant from the Danish Cancer Society under Grant no. R54-A3264. HCS has received research funding from Novartis Oncology. MVE has no conflict of interest to declare.

The sources of funding had no involvement in the study design, collection, analysis, or interpretation of data; writing of the report; or the decision to submit the work for publication.

Ethical approval

For this retrospective study, formal consent is not required.


  1. 1.
    Orazi A, Bennett JM, Germing U, Brunning RD, Bain BJ, Cazzola M, Foucar K, Thiele J (2017) Chronic myelomonocytic leukaemia. In: Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (eds) WHO classification of Tumours of Haematopoietic and lymphoid tissues (revised 4th edition). IARCH: Lyon, pp 82–86Google Scholar
  2. 2.
    Ganda A, Magnusson M, Yvan-Charvet L, Hedblad B, Engstrom G, Ai D, Wang TJ, Gerszten RE, Melander O, Tall AR (2013) Mild renal dysfunction and metabolites tied to low HDL cholesterol are associated with monocytosis and atherosclerosis. Circulation 127(9):988–996CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Afiune Neto A, Mansur Ade P, Avakian SD, Gomes EP, Ramires JA (2006) Monocytosis is an independent risk marker for coronary artery disease. Arq Bras Cardiol 86(3):240–244CrossRefPubMedGoogle Scholar
  4. 4.
    Combadiere C, Potteaux S, Rodero M, Simon T, Pezard A, Esposito B, Merval R, Proudfoot A, Tedgui A, Mallat Z (2008) Combined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 117(13):1649–1657CrossRefPubMedGoogle Scholar
  5. 5.
    Chapman CM, Beilby JP, McQuillan BM, Thompson PL, Hung J (2004) Monocyte count, but not C-reactive protein or interleukin-6, is an independent risk marker for subclinical carotid atherosclerosis. Stroke 35(7):1619–1624CrossRefPubMedGoogle Scholar
  6. 6.
    Pittet MJ, Swirski FK (2011) Monocytes link atherosclerosis and cancer. Eur J Immunol 41(9):2519–2522CrossRefPubMedGoogle Scholar
  7. 7.
    Hasselbalch HC (2012) Perspectives on chronic inflammation in essential thrombocythemia, polycythemia vera, and myelofibrosis: is chronic inflammation a trigger and driver of clonal evolution and development of accelerated atherosclerosis and second cancer? Blood 119(14):3219–3225CrossRefPubMedGoogle Scholar
  8. 8.
    Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida-Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377(12):1119–1131CrossRefGoogle Scholar
  9. 9.
    Hollan I, Meroni PL, Ahearn JM, Cohen Tervaert JW, Curran S, Goodyear CS, Hestad KA, Kahaleh B, Riggio M, Shields K, Wasko MC (2013) Cardiovascular disease in autoimmune rheumatic diseases. Autoimmun Rev 12(10):1004–1015CrossRefPubMedGoogle Scholar
  10. 10.
    Sherer Y, Shoenfeld Y (2006) Mechanisms of disease: atherosclerosis in autoimmune diseases. Nat Clin Pract Rheumatol 2(2):99–106CrossRefPubMedGoogle Scholar
  11. 11.
    Deniz Peker EP, Pedro Horna, John M. Bennett, Xiaohui Zhang, P.K. Epling-Burnette, Jeffrey E Lancet, Javier Pinilla8, Lynn Moscinski, Alan F. List, Rami S. Komrokji and Ling Zhang. A close association of history of autoimmunity with chronic myelomonocytic leukemia (CMML) in contrast to chronic myelogenous leukemia (CML). 54th ASH annual meeting and exposition; Atlanta 2012Google Scholar
  12. 12.
    Elbaek MV, Sorensen AL, Hasselbalch HC (2016) Chronic inflammation and autoimmunity as risk factors for the development of chronic myelomonocytic leukemia? Leukemia Lymphoma:1–7Google Scholar
  13. 13.
    Alexandrakis M, Coulocheri S, Xylouri I, Ganotakis E, Eliakis P, Karkavitsas N, Eliopoulos GD (1998) Elevated serum TNF-alpha concentrations are predictive of shortened survival in patients with high-risk myelodysplastic syndromes. Haematologia 29(1):13–24PubMedGoogle Scholar
  14. 14.
    Swirski FK, Libby P, Aikawa E, Alcaide P, Luscinskas FW, Weissleder R, Pittet MJ (2007) Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J Clin Invest 117(1):195–205CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Adamsson Eryd S, Smith JG, Melander O, Hedblad B, Engstrom G (2012) Incidence of coronary events and case fatality rate in relation to blood lymphocyte and neutrophil counts. Arterioscler Thromb Vasc Biol 32(2):533–539CrossRefPubMedGoogle Scholar
  16. 16.
    Patnaik MM, Zahid MF, Lasho TL, Finke C, Ketterling RL, Gangat N, Robertson KD, Hanson CA, Tefferi A (2016) Number and type of TET2 mutations in chronic myelomonocytic leukemia and their clinical relevance. Blood Cancer J 6(9):e472CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, McConkey M, Gupta N, Gabriel S, Ardissino D, Baber U, Mehran R, Fuster V, Danesh J, Frossard P, Saleheen D, Melander O, Sukhova GK, Neuberg D, Libby P, Kathiresan S, Ebert BL (2017) Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med 377(2):111–121CrossRefGoogle Scholar
  18. 18.
    Marty C, Lacout C, Droin N, Le Couedic JP, Ribrag V, Solary E et al (2013) A role for reactive oxygen species in JAK2 V617F myeloproliferative neoplasm progression. Leukemia 27(11):2187–2195CrossRefPubMedGoogle Scholar
  19. 19.
    Zoi K, Cross NC (2015) Molecular pathogenesis of atypical CML, CMML and MDS/MPN-unclassifiable. Int J Hematol 101(3):229–242CrossRefPubMedGoogle Scholar
  20. 20.
    Nielsen C, Birgens HS, Nordestgaard BG, Bojesen SE (2013) Diagnostic value of JAK2 V617F somatic mutation for myeloproliferative cancer in 49 488 individuals from the general population. Br J Haematol 160(1):70–79CrossRefPubMedGoogle Scholar
  21. 21.
    Molenaar RJ, Radivoyevitch T, Sekeres MA, Mukherjee S, Maciejewski JP (2017) High rates of atherosclerotic disease-related mortality in myelodysplastic syndromes and chronic myelomonocytic leukemia patients associated with TET2-mutations. ASH 59th annual meeting & exposition; December 10th Atlanta, GA. Blood:421Google Scholar
  22. 22.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951CrossRefPubMedGoogle Scholar
  23. 23.
    Lindholm Sorensen A, Hasselbalch HC (2015) Smoking and Philadelphia-negative chronic myeloproliferative neoplasms. Eur J HaematolGoogle Scholar
  24. 24.
    Selimoglu-Buet D, Wagner-Ballon O, Saada V, Bardet V, Itzykson R, Bencheikh L, Morabito M, Met E, Debord C, Benayoun E, Nloga AM, Fenaux P, Braun T, Willekens C, Quesnel B, Ades L, Fontenay M, Rameau P, Droin N, Koscielny S, Solary E, on behalf of the Groupe Francophone des Myelodysplasies (2015) Characteristic repartition of monocyte subsets as a diagnostic signature of chronic myelomonocytic leukemia. Blood 125(23):3618–3626CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yang J, Zhang L, Yu C, Yang XF, Wang H (2014) Monocyte and macrophage differentiation circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Res 2(1):1CrossRefGoogle Scholar
  26. 26.
    Idzkowska E, Eljaszewicz A, Miklasz P, Musial WJ, Tycinska AM, Moniuszko M (2015) The role of different monocyte subsets in the pathogenesis of atherosclerosis and acute coronary syndromes. Scand J Immunol 82(3):163–173CrossRefPubMedGoogle Scholar
  27. 27.
    Patel BJ, Przychodzen B, Thota S, Radivoyevitch T, Visconte V, Kuzmanovic T, Clemente M, Hirsch C, Morawski A, Souaid R, Saygin C, Nazha A, Demarest B, LaFramboise T, Sakaguchi H, Kojima S, Carraway HE, Ogawa S, Makishima H, Sekeres MA, Maciejewski JP (2017) Genomic determinants of chronic myelomonocytic leukemia. Leukemia 31:2815–2823CrossRefPubMedGoogle Scholar
  28. 28.
    Hanna BS, Ozturk S, Seiffert M (2017) Beyond bystanders: myeloid cells in chronic lymphocytic leukemia. Mol ImmunolGoogle Scholar
  29. 29.
    Deininger MWN, Tyner JW, Solary E (2017) Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nat Rev Cancer 17(7):425–440CrossRefPubMedGoogle Scholar
  30. 30.
    Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, Zhao D, Liu Y, Wang C, Zhang X, Su X, Liu J, Ge W, Levine RL, Li N, Cao X (2015) Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525(7569):389–393CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kameda T, Shide K, Yamaji T, Kamiunten A, Sekine M, Taniguchi Y, Hidaka T, Kubuki Y, Shimoda H, Marutsuka K, Sashida G, Aoyama K, Yoshimitsu M, Harada T, Abe H, Miike T, Iwakiri H, Tahara Y, Sueta M, Yamamoto S, Hasuike S, Nagata K, Iwama A, Kitanaka A, Shimoda K (2015) Loss of TET2 has dual roles in murine myeloproliferative neoplasms: disease sustainer and disease accelerator. Blood 125(2):304–315CrossRefPubMedGoogle Scholar
  32. 32.
    Tefferi A, Barbui T (2017) Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol 92(1):94–108CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Hematology, Roskilde HospitalUniversity of CopenhagenRoskildeDenmark
  2. 2.København ØDenmark
  3. 3.Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark

Personalised recommendations