Annals of Hematology

, Volume 97, Issue 5, pp 781–789 | Cite as

CD19 targeted CAR-T therapy versus chemotherapy in re-induction treatment of refractory/relapsed acute lymphoblastic leukemia: results of a case-controlled study

  • Guoqing Wei
  • Yongxian Hu
  • Chengfei Pu
  • Jian Yu
  • Yi Luo
  • Jimin Shi
  • Qu Cui
  • Wenjun Wu
  • Jinping Wang
  • Lei Xiao
  • Zhao WuEmail author
  • He HuangEmail author
Original Article


Chimeric antigen receptor modified T cells against CD19 (CART19s) have potent anti-leukemia activities in patients with refractory/relapsed acute lymphoblastic leukemia (R/R ALL). This study was designed to investigate the correlation between safety/efficacy and therapeutic modalities including chemotherapy and CART19 therapy. Total 23 and 69 patients were enrolled in the CART19 group and in the chemotherapy group, respectively. The safety and efficacy profiles of 66 and 22 patients in the 2 groups were evaluated. The complete remission (CR) rate was higher in the CART19 group than that in the chemotherapy group (90.9 vs 37.9%, P = 0.000). For patients relapsed after allo-HSCT and chemotherapy, CR rates were 100% (8/8) vs 48.0% (12/25) (P = 0.009) and 85.7% (12/14) vs 31.7% (13/41) (P = 0.000), respectively. Moreover, a higher percentage in the CART19 group had results below the threshold for minimal residual disease (100 vs 7.58%, P = 0.000). In survival analysis, the overall survival rate at 12 months was higher in the CART19 group than that in the chemotherapy group (60.9 vs 10.1%, P = 0.000). For post-transplant patients achieving CR, 25.0% (2/8) and 75.0% (9/12) complicated with GVHD (P = 0.04) in the CART19 group and chemotherapy group, respectively. For all CR patients, the median duration of absolute neutrophil count less than 500/μL and platelet count less than 20,000/μL were longer in the CART19 group than in the chemotherapy group (p = 0.0047 and 0.0003, respectively). Our data demonstrated that patients with CART19s therapy acquired higher rates of remission and longer survival, confirming the encouraging application of CART19 therapy in R/R ALL.


Chimeric antigen receptor T cells Refractory/relapsed Acute lymphoblastic leukemia 



This work was supported by the grants from 973 Program (2015CB964900), the Natural Science Foundation of China (81230014, 81470341, 81520108002, 81500157), and the Key Project of Science and Technology Department of Zhejiang Province (2015C03G2010091).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

277_2018_3246_MOESM1_ESM.docx (18 kb)
Supplementary Table 1 (DOCX 17 kb)
277_2018_3246_MOESM2_ESM.docx (17 kb)
Supplementary Table 2 (DOCX 17 kb)


  1. 1.
    Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, Wei A, Dombret H, Foà R, Bassan R, Arslan Ö, Sanz MA, Bergeron J, Demirkan F, Lech-Maranda E, Rambaldi A, Thomas X, Horst HA, Brüggemann M, Klapper W, Wood BL, Fleishman A, Nagorsen D, Holland C, Zimmerman Z, Topp MS (2017) Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 376(9):836–847. CrossRefPubMedGoogle Scholar
  2. 2.
    Gökbuget N, Kelsh M, Chia V, Advani A, Bassan R, Dombret H, Doubek M, Fielding AK, Giebel S, Haddad V, Hoelzer D, Holland C, Ifrah N, Katz A, Maniar T, Martinelli G, Morgades M, O'Brien S, Ribera JM, Rowe JM, Stein A, Topp M, Wadleigh M, Kantarjian H (2016) Blinatumomab vs historical standard therapy of adult relapsed/refractory acute lymphoblastic leukemia. Blood Cancer J 6(9):e473. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Gökbuget N, Dombret H, Ribera JM, Fielding AK, Advani A, Bassan R et al (2016) International reference analysis of outcomes in adults with B-precursor Ph-negative relapsed/refractory acute lymphoblastic leukemia. Haematologica 101(12):1524–1533. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Stein A, Palmer J, Tsai NC, Al Malki MM, Aldoss I, Ali H, Aribi A, Farol L, Karanes C, Khaled S, Liu A, O'Donnell M, Parker P, Pawlowska A, Pullarkat V, Radany E, Rosenthal J, Sahebi F, Salhotra A, Sanchez JF, Schultheiss T, Spielberger R, Thomas SH, Snyder D, Nakamura R, Marcucci G, Forman SJ, Wong J (2017) Phase I trial of total marrow and lymphoid irradiation transplantation conditioning in patients with relapsed/refractory acute leukemia. Biol Blood Marrow Transplant 23(4):618–624. CrossRefPubMedGoogle Scholar
  5. 5.
    Jabbour E, Short NJ, Jorgensen JL, Yilmaz M, Ravandi F, Wang SA, Thomas DA, Khoury J, Champlin RE, Khouri I, Kebriaei P, O'Brien SM, Garcia-Manero G, Cortes JE, Sasaki K, Dinardo CD, Kadia TM, Jain N, Konopleva M, Garris R, Kantarjian HM (2017) Differential impact of minimal residual disease negativity according to the salvage status in patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Cancer 123(2):294–302. CrossRefPubMedGoogle Scholar
  6. 6.
    Oriol A, Vives S, Hernández-Rivas JM et al (2010) Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica 95(4):589–596. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Haen SP, Groh C, Schumm M, Backert L, Löffler MW, Federmann B, Faul C, Dörfel D, Vogel W, Handgretinger R, Kanz L, Bethge WA (2017) Haploidentical hematopoietic cell transplantation using in vitro T cell depleted grafts as salvage therapy in patients with disease relapse after prior allogeneic transplantation. Ann Hematol 96(5):817–827. CrossRefPubMedGoogle Scholar
  8. 8.
    Yoo SH, Koh Y, Kim DY, Lee JH, Lee JH, Lee KH, Korean Society of Blood and Marrow Transplantation et al (2017) Salvage therapy for acute chemorefractory leukemia by allogeneic stem cell transplantation: the Korean experience. Ann Hematol 96(4):605–615. CrossRefPubMedGoogle Scholar
  9. 9.
    DasGupta RK, Marini BL, Rudoni J, Perissinotti AJ (2017) A review of CD19-targeted immunotherapies for relapsed or refractory acute lymphoblastic leukemia. J Oncol Pharm Pract 1078155217713363:107815521771336. CrossRefGoogle Scholar
  10. 10.
    Hay KA, Turtle CJ (2017) Chimeric antigen receptor (CAR) T cells: lessons learned from targeting of CD19 in B-cell malignancies. Drugs 77(3):237–245. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hu Y, Wu Z, Luo Y, Shi J, Yu J, Pu C, Liang Z, Wei G, Cui Q, Sun J, Jiang J, Xie J, Tan Y, Ni W, Tu J, Wang J, Jin A, Zhang H, Cai Z, Xiao L, Huang H (2017) Potent anti-leukemia activities of chimeric antigen receptor-modified T cells against CD19 in Chinese patients with relapsed/refractory acute lymphocytic leukemia. Clin Cancer Res 23(13):3297–3306. CrossRefPubMedGoogle Scholar
  12. 12.
    Hu Y, Sun J, Wu Z, Yu J, Cui Q, Pu C, Liang B, Luo Y, Shi J, Jin A, Xiao L, Huang H (2016) Predominant cerebral cytokine release syndrome in CD19-directed chimeric antigen receptor-modified T cell therapy. J Hematol Oncol 9(1):70. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tan Y, Du K, Luo Y, Shi J, Cao L, Zheng Y, Zheng G, Zhao Y, Ye X, Cai Z, Huang H (2014) Superiority of preemptive donor lymphocyte infusion based on minimal residual disease in acute leukemia patients after allogeneic hematopoietic stem cell transplantation. Transfusion 54(6):1493–1500. CrossRefPubMedGoogle Scholar
  14. 14.
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman SA, Fry TJ, Orentas R, Sabatino M, Shah NN, Steinberg SM, Stroncek D, Tschernia N, Yuan C, Zhang H, Zhang L, Rosenberg SA, Wayne AS, Mackall CL (2015) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385(9967):517–528. CrossRefPubMedGoogle Scholar
  15. 15.
    Valecha GK, Ibrahim U, Ghanem S, Asti D, Atallah JP, Terjanian T (2017) Emerging role of immunotherapy in precursor B-cell acute lymphoblastic leukemia. Expert Rev Hematol 10:1–17. CrossRefGoogle Scholar
  16. 16.
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, Mahnke YD, Melenhorst JJ, Rheingold SR, Shen A, Teachey DT, Levine BL, June CH, Porter DL, Grupp SA (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371(16):1507–1517. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra25.1CrossRefGoogle Scholar
  18. 18.
    Dai H, Wang Y, Lu X, Han W (2016) Chimeric antigen receptors modified T-cells for cancer therapy. J Natl Cancer Inst 108(7).
  19. 19.
    Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, Lange E, Köppler H, Kiehl M, Sökler M, Schlag R, Vehling-Kaiser U, Köchling G, Plöger C, Gregor M, Plesner T, Trneny M, Fischer K, Döhner H, Kneba M, Wendtner CM, Klapper W, Kreuzer KA, Stilgenbauer S, Böttcher S, Hallek M, international group of investigators; German CLL Study Group (GCLLSG) (2016) First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 17(7):928–942. CrossRefPubMedGoogle Scholar
  20. 20.
    Skarbnik AP, Faderl S (2017) The role of combined fludarabine, cyclophosphamide and rituximab chemoimmunotherapy in chronic lymphocytic leukemia: current evidence and controversies. Ther Adv Hematol 8(3):99–105. CrossRefPubMedGoogle Scholar
  21. 21.
    Mauro FR, Carella AM, Molica S, Paoloni F, Liberati AM, Zaja F, Belsito V, Cortellezzi A, Rizzi R, Tosi P, Spriano M, Ferretti A, Nanni M, Marinelli M, de Propris MS, Orlando SM, Vignetti M, Cuneo A, Guarini AR, Foà R (2017) Fludarabine, cyclophosphamide and lenalidomide in patients with relapsed/refractory chronic lymphocytic leukemia. A multicenter phase I-II GIMEMA trial. Leuk Lymphoma 58(7):1640–1647. CrossRefPubMedGoogle Scholar
  22. 22.
    Canna SW, Wrobel J, Chu N, Kreiger PA, Paessler M, Behrens EM (2013) Interferon-γ mediates anemia but is dispensable for fulminant toll-like receptor 9-induced macrophage activation syndrome and hemophagocytosis in mice. Arthritis Rheum 65(7):1764–1775. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen J, Feng X, Desierto MJ, Keyvanfar K, Young NS (2015) IFN-γ-mediated hematopoietic cell destruction in murine models of immune-mediated bone marrow failure. Blood 126(24):2621–2631. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Smith JN, Kanwar VS, MacNamara KC (2016) Hematopoietic stem cell regulation by type I and II interferons in the pathogenesis of acquired aplastic anemia. Front Immunol 7:330PubMedPubMedCentralGoogle Scholar
  25. 25.
    DeAngelo DJ, Stock W, Stein AS, Shustov A, Liedtke M, Schiffer CA, Vandendries E, Liau K, Ananthakrishnan R, Boni J, Laird AD, Fostvedt L, Kantarjian HM, Advani AS (2017) Inotuzumab ozogamicin in adults with relapsed or refractory CD22-positive acute lymphoblastic leukemia: a phase 1/2 study. Blood Adv 1(15):1167–1180. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Topp MS, Gokbuget N, Stein AS, Zugmaier G, O'Brien S, Bargou RC et al (2015) Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol 16:57e66CrossRefGoogle Scholar
  27. 27.
    Frey N (2017) Cytokine release syndrome: who is at risk and how to treat. Best Pract Res Clin Haematol 30(4):336–340. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bone Marrow Transplantation Center, The First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Innovative Cellular Therapeutics Co., Ltd.ShanghaiChina
  3. 3.Department of HematologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina

Personalised recommendations