Annals of Hematology

, Volume 97, Issue 4, pp 629–640 | Cite as

A novel heterozygous ITGB3 p.T720del inducing spontaneous activation of integrin αIIbβ3 in autosomal dominant macrothrombocytopenia with aggregation dysfunction

  • Naohiro Miyashita
  • Masahiro OnozawaEmail author
  • Koji Hayasaka
  • Takahiro Yamada
  • Ohsuke Migita
  • Kenichiro Hata
  • Kohei Okada
  • Hideki Goto
  • Masao Nakagawa
  • Daigo Hashimoto
  • Kaoru Kahata
  • Takeshi Kondo
  • Shinji Kunishima
  • Takanori Teshima
Original Article


We identified a novel heterozygous ITGB3 p.T720del mutation in a pedigree with macrothrombocytopenia exhibiting aggregation dysfunction. Platelet aggregation induced by ADP and collagen was significantly reduced, while ristocetin aggregation was normal. Integrin αIIbβ3 was partially activated in a resting status, but platelet expression of αIIbβ3 was downregulated. Functional analysis using a cell line showed spontaneous phosphorylation of FAK in αIIb/β3 (p.T720del)-transfected 293T cells in suspension conditions. Abnormal cytoplasmic protrusions, membrane ruffling, and cytoplasmic localization of αIIbβ3 were observed in αIIb/β3 (p.T720del)-transfected CHO cells. Such morphological changes were reversed by treatment with an FAK inhibitor. These findings imply spontaneous, but partial, activation of αIIbβ3 followed by phosphorylation of FAK as the initial mechanism of abnormal thrombopoiesis. Internalization and decreased surface expression of αIIbβ3 would contribute to aggregation dysfunction. We reviewed the literature of congenital macrothrombocytopenia associated with heterozygous ITGA2B or ITGB3 mutations. Reported mutations were highly clustered at the membrane proximal region of αIIbβ3, which affected the critical interaction between αIIb R995 and β3 D723, resulting in a constitutionally active form of the αIIbβ3 complex. Macrothrombocytopenia caused by a heterozygous activating mutation of ITGA2B or ITGB3 at the membrane proximal region forms a distinct entity of rare congenital thrombocytopenia.


Congenital macrothrombocytopenia FAK phosphorylation ITGB3 Integrin αIIbβ3 Platelet 



We thank Professor Kazuhiko Matsuno (Rakuno Gakuen University, Ebetsu) for kind advice for flow cytometry.


There is no financial relationship with other people or organizations that could inappropriately influence their work.

Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments. Informed consent was obtained from all patients for being included in the study. This study was approved by the Institutional Review Board of Hokkaido University Faculty of Medicine.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Balduini CL, Cattaneo M, Fabris F, Gresele P, Iolascon A, Pulcinelli FM, Savoia A, Italian Gruppo di Studio delle P (2003) Inherited thrombocytopenias: a proposed diagnostic algorithm from the Italian Gruppo di Studio delle Piastrine. Haematologica 88(5):582–592PubMedGoogle Scholar
  2. 2.
    Kunishima S, Okuno Y, Yoshida K, Shiraishi Y, Sanada M, Muramatsu H, Chiba K, Tanaka H, Miyazaki K, Sakai M, Ohtake M, Kobayashi R, Iguchi A, Niimi G, Otsu M, Takahashi Y, Miyano S, Saito H, Kojima S, Ogawa S (2013) ACTN1 mutations cause congenital macrothrombocytopenia. Am J Hum Genet 92(3):431–438. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kunishima S, Saito H (2006) Congenital macrothrombocytopenias. Blood Rev 20(2):111–121. CrossRefPubMedGoogle Scholar
  4. 4.
    Savoia A (2016) Molecular basis of inherited thrombocytopenias: an update. Curr Opin Hematol 23(5):486–492. CrossRefPubMedGoogle Scholar
  5. 5.
    Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A, ThromboGenomics C, Filizola M, Ouwehand WH, Coller BS (2015) alphaIIbbeta3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 112(15):E1898–E1907. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ghevaert C, Salsmann A, Watkins NA, Schaffner-Reckinger E, Rankin A, Garner SF, Stephens J, Smith GA, Debili N, Vainchenker W, de Groot PG, Huntington JA, Laffan M, Kieffer N, Ouwehand WH (2008) A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia. Blood 111(7):3407–3414. CrossRefPubMedGoogle Scholar
  7. 7.
    Hardisty R, Pidard D, Cox A, Nokes T, Legrand C, Bouillot C, Pannocchia A, Heilmann E, Hourdille P, Bellucci S et al (1992) A defect of platelet aggregation associated with an abnormal distribution of glycoprotein IIb-IIIa complexes within the platelet: the cause of a lifelong bleeding disorder. Blood 80(3):696–708PubMedGoogle Scholar
  8. 8.
    Jayo A, Conde I, Lastres P, Martinez C, Rivera J, Vicente V, Gonzalez-Manchon C (2010) L718P mutation in the membrane-proximal cytoplasmic tail of beta 3 promotes abnormal alpha IIb beta 3 clustering and lipid microdomain coalescence, and associates with a thrombasthenia-like phenotype. Haematologica 95(7):1158–1166. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kashiwagi H, Kunishima S, Kiyomizu K, Amano Y, Shimada H, Morishita M, Kanakura Y, Tomiyama Y (2013) Demonstration of novel gain-of-function mutations of alphaIIbbeta3: association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype. Mol Genet Genomic Med 1(2):77–86. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kunishima S, Kashiwagi H, Otsu M, Takayama N, Eto K, Onodera M, Miyajima Y, Takamatsu Y, Suzumiya J, Matsubara K, Tomiyama Y, Saito H (2011) Heterozygous ITGA2B R995W mutation inducing constitutive activation of the alphaIIbbeta3 receptor affects proplatelet formation and causes congenital macrothrombocytopenia. Blood 117(20):5479–5484. CrossRefPubMedGoogle Scholar
  11. 11.
    Nurden P, Bordet J, Pillois X, Nurden AT (2017) An intracytoplasmic β3 Leu718 deletion in a patient with a novel platelet phenotype. Blood Advances 1(8):494–499. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Peyruchaud O, Nurden AT, Milet S, Macchi L, Pannochia A, Bray PF, Kieffer N, Bourre F (1998) R to Q amino acid substitution in the GFFKR sequence of the cytoplasmic domain of the integrin IIb subunit in a patient with a Glanzmann’s thrombasthenia-like syndrome. Blood 92(11):4178–4187PubMedGoogle Scholar
  13. 13.
    Larson MK, Watson SP (2006) Regulation of proplatelet formation and platelet release by integrin alpha IIb beta3. Blood 108(5):1509–1514. CrossRefPubMedGoogle Scholar
  14. 14.
    Kasirer-Friede A, Kahn ML, Shattil SJ (2007) Platelet integrins and immunoreceptors. Immunol Rev 218(1):247–264. CrossRefPubMedGoogle Scholar
  15. 15.
    Bury L, Malara A, Gresele P, Balduini A (2012) Outside-in signalling generated by a constitutively activated integrin alphaIIbbeta3 impairs proplatelet formation in human megakaryocytes. PLoS One 7(4):e34449. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Gallo Cassarino T, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42 (Web Server issue)(W1):W252–W258. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang Y, Geer LY, Chappey C, Kans JA, Bryant SH (2000) Cn3D: sequence and structure views for Entrez. Trends Biochem Sci 25(6):300–302. CrossRefPubMedGoogle Scholar
  18. 18.
    Shattil SJ, Cunningham M, Hoxie JA (1987) Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry. Blood 70(1):307–315PubMedGoogle Scholar
  19. 19.
    Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H (2009) Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 113(2):458–461. CrossRefPubMedGoogle Scholar
  20. 20.
    de Virgilio M, Kiosses WB, Shattil SJ (2004) Proximal, selective, and dynamic interactions between integrin alphaIIbbeta3 and protein tyrosine kinases in living cells. J Cell Biol 165(3):305–311. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Watson SP, Auger JM, McCarty OJ, Pearce AC (2005) GPVI and integrin alphaIIb beta3 signaling in platelets. J Thromb Haemost 3(8):1752–1762. CrossRefPubMedGoogle Scholar
  22. 22.
    Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418. CrossRefPubMedGoogle Scholar
  23. 23.
    Golubovskaya VM, Nyberg C, Zheng M, Kweh F, Magis A, Ostrov D, Cance WG (2008) A small molecule inhibitor, 1,2,4,5-benzenetetraamine tetrahydrochloride, targeting the y397 site of focal adhesion kinase decreases tumor growth. J Med Chem 51(23):7405–7416. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nurden AT, Fiore M, Nurden P, Pillois X (2011) Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 118(23):5996–6005. CrossRefPubMedGoogle Scholar
  25. 25.
    Dorsam RT, Kunapuli SP (2004) Central role of the P2Y12 receptor in platelet activation. J Clin Invest 113(3):340–345. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hirata T, Ushikubi F, Kakizuka A, Okuma M, Narumiya S (1996) Two thromboxane A2 receptor isoforms in human platelets. Opposite coupling to adenylyl cyclase with different sensitivity to Arg60 to Leu mutation. J Clin Invest 97(4):949–956. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lefkovits J, Plow EF, Topol EJ (1995) Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 332(23):1553–1559. CrossRefPubMedGoogle Scholar
  28. 28.
    Springer TA, Dustin ML (2012) Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24(1):107–115. CrossRefPubMedGoogle Scholar
  29. 29.
    Bennett JS (2005) Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest 115(12):3363–3369. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Flevaris P, Stojanovic A, Gong H, Chishti A, Welch E, Du X (2007) A molecular switch that controls cell spreading and retraction. J Cell Biol 179(3):553–565. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kobayashi Y, Matsui H, Kanai A, Tsumura M, Okada S, Miki M, Nakamura K, Kunishima S, Inaba T, Kobayashi M (2013) Identification of the integrin beta3 L718P mutation in a pedigree with autosomal dominant thrombocytopenia with anisocytosis. Br J Haematol 160(4):521–529. CrossRefPubMedGoogle Scholar
  32. 32.
    Radley JM, Scurfield G (1980) The mechanism of platelet release. Blood 56(6):996–999PubMedGoogle Scholar
  33. 33.
    Chang Y, Aurade F, Larbret F, Zhang Y, Le Couedic JP, Momeux L, Larghero J, Bertoglio J, Louache F, Cramer E, Vainchenker W, Debili N (2007) Proplatelet formation is regulated by the Rho/ROCK pathway. Blood 109(10):4229–4236. CrossRefPubMedGoogle Scholar
  34. 34.
    Chen Z, Naveiras O, Balduini A, Mammoto A, Conti MA, Adelstein RS, Ingber D, Daley GQ, Shivdasani RA (2007) The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway. Blood 110(1):171–179. CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Schaffner-Reckinger E, Salsmann A, Debili N, Bellis J, De Mey J, Vainchenker W, Ouwehand WH, Kieffer N (2009) Overexpression of the partially activated alpha(IIb)beta3D723H integrin salt bridge mutant downregulates RhoA activity and induces microtubule-dependent proplatelet-like extensions in Chinese hamster ovary cells. J Thromb Haemost 7(7):1207–1217. CrossRefPubMedGoogle Scholar
  36. 36.
    Nieswandt B, Varga-Szabo D, Elvers M (2009) Integrins in platelet activation. J Thromb Haemost 7(Suppl 1):206–209. CrossRefPubMedGoogle Scholar
  37. 37.
    Shin EK, Park H, Noh JY, Lim KM, Chung JH (2016) Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol Ther (Seoul) 25(3):223–230. CrossRefGoogle Scholar
  38. 38.
    Wencel-Drake JD, Boudignon-Proudhon C, Dieter MG, Criss AB, Parise LV (1996) Internalization of bound fibrinogen modulates platelet aggregation. Blood 87(2):602–612PubMedGoogle Scholar
  39. 39.
    Schober JM, Lam SC, Wencel-Drake JD (2003) Effect of cellular and receptor activation on the extent of integrin alphaIIbbeta3 internalization. J Thromb Haemost 1(11):2404–2410. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Naohiro Miyashita
    • 1
  • Masahiro Onozawa
    • 1
    Email author
  • Koji Hayasaka
    • 2
  • Takahiro Yamada
    • 3
  • Ohsuke Migita
    • 4
  • Kenichiro Hata
    • 4
  • Kohei Okada
    • 1
  • Hideki Goto
    • 1
  • Masao Nakagawa
    • 1
  • Daigo Hashimoto
    • 1
  • Kaoru Kahata
    • 1
  • Takeshi Kondo
    • 1
  • Shinji Kunishima
    • 5
  • Takanori Teshima
    • 1
  1. 1.Department of HematologyHokkaido University Faculty of Medicine, Graduate School of MedicineSapporoJapan
  2. 2.Division of Laboratory and Transfusion MedicineHokkaido University HospitalSapporoJapan
  3. 3.Division of Clinical GeneticsHokkaido University HospitalSapporoJapan
  4. 4.Department of Maternal-Fetal BiologyNational Research Institute for Child Health and DevelopmentTokyoJapan
  5. 5.Department of Advanced Diagnosis, Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan

Personalised recommendations