Skip to main content

Advertisement

Log in

Vitamin D and plasma cell dyscrasias: reviewing the significance

  • Review Article
  • Published:
Annals of Hematology Aims and scope Submit manuscript

Abstract

Monoclonal gammopathy of undetermined significance (MGUS) is a clonal plasma cell disorder and precursor disease to multiple myeloma and other related cancers. While MGUS is considered a benign disorder, with a low risk of disease progression, patients have altered bone microarchitecture and an increased risk of bone fracture. In addition, alterations in immune function are regularly found to correlate with disease activity. Vitamin D, an important hormone for bone and immune health, is commonly deficient in multiple myeloma patients. However, vitamin D deficiency is also prevalent in the general population. The purpose of this review is to highlight the current understanding of vitamin D in health and disease and to parallel this with a review of the abnormalities found in plasma cell dyscrasias. While some consensus statements have advocated for vitamin D testing and routine supplementation in MGUS, there is no clear standard of care approach and clinical practice patterns vary. Further research is needed to better understand how vitamin D influences outcomes in MGUS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Landgren O, Kyle RA, Pfeiffer RM, Katzmann JA, Caporaso NE, Hayes RB et al (2009) Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study. Blood 113(22):5412–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Weiss BM, Abadie J, Verma P, Howard RS, Kuehl WM (2009) A monoclonal gammopathy precedes multiple myeloma in most patients. Blood 113(22):5418–5422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kyle RA, Durie BG, Rajkumar SV, Landgren O, Blade J, Merlini G et al (2010) Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management. Leukemia 24(6):1121–1127

    Article  CAS  PubMed  Google Scholar 

  4. Kyle RA, Therneau TM, Rajkumar SV, Larson DR, Plevak MF, Offord JR et al (2006) Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 354(13):1362–1369

    Article  CAS  PubMed  Google Scholar 

  5. Landgren O, Gridley G, Turesson I, Caporaso NE, Goldin LR, Baris D et al (2006) Risk of monoclonal gammopathy of undetermined significance (MGUS) and subsequent multiple myeloma among African American and white veterans in the United States. Blood 107(3):904–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cohen HJ, Crawford J, Rao MK, Pieper CF, Currie MS (1998) Racial differences in the prevalence of monoclonal gammopathy in a community-based sample of the elderly. Am J Med 104(5):439–444

    Article  CAS  PubMed  Google Scholar 

  7. Landgren O, Shim YK, Michalek J, Costello R, Burton D, Ketchum N et al (2015) Agent Orange exposure and monoclonal gammopathy of undetermined significance: an operation ranch hand veteran cohort study. JAMA Oncol 1(8):1061–1068

    Article  PubMed  Google Scholar 

  8. Landgren O, Kyle RA, Hoppin JA, Beane Freeman LE, Cerhan JR, Katzmann JA et al (2009) Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the agricultural health study. Blood 113(25):6386–6391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vachon CM, Kyle RA, Therneau TM, Foreman BJ, Larson DR, Colby CL et al (2009) Increased risk of monoclonal gammopathy in first-degree relatives of patients with multiple myeloma or monoclonal gammopathy of undetermined significance. Blood 114(4):785–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mohr SB, Gorham ED, Garland CF, Grant WB, Garland FC, Cuomo RE (2015) Are low ultraviolet B and vitamin D associated with higher incidence of multiple myeloma? J Steroid Biochem Mol Biol. Apr 148:245–252

    CAS  Google Scholar 

  11. Chang ET, Canchola AJ, Cockburn M, Lu Y, Wang SS, Bernstein L et al (2011) Adulthood residential ultraviolet radiation, sun sensitivity, dietary vitamin D, and risk of lymphoid malignancies in the California Teachers Study. Blood 118(6):1591–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van de Donk NW, Palumbo A, Johnsen HE, Engelhardt M, Gay F, Gregersen H et al (2014) The clinical relevance and management of monoclonal gammopathy of undetermined significance and related disorders: recommendations from the European myeloma network. Haematologica 99(6):984–996

    Article  PubMed  PubMed Central  Google Scholar 

  13. Berenson JR, Anderson KC, Audell RA, Boccia RV, Coleman M, Dimopoulos MA et al (2010) Monoclonal gammopathy of undetermined significance: a consensus statement. Br J Haematol 150(1):28–38

    PubMed  Google Scholar 

  14. Institute of Medicine (US) (2011) Committee to review dietary reference intakes for Vitamin D and Calcium. In: Ross AC, Taylor CL, Yaktine AL, et al. (eds) Dietary reference intakes for Calcium and Vitamin D. National Academies Press, Washington

  15. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  16. Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP et al (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 96(7):1911–1930

    Article  CAS  PubMed  Google Scholar 

  17. Forrest KY, Stuhldreher WL (2011) Prevalence and correlates of vitamin D deficiency in US adults. Nutr Res 31(1):48–54

    Article  CAS  PubMed  Google Scholar 

  18. Looker AC, Johnson CL, Lacher DA, Pfeiffer CM, Schleicher RL, Sempos CT (2011) Vitamin D status: United States, 2001–2006. NCHS Data Brief 59(59):1–8

    Google Scholar 

  19. Ginde AA, Liu MC, Camargo CA Jr (2009) Demographic differences and trends of vitamin D insufficiency in the US population, 1988–2004. Arch Intern Med 169(6):626–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Binkley N, Novotny R, Krueger D, Kawahara T, Daida YG, Lensmeyer G et al (2007) Low vitamin D status despite abundant sun exposure. J Clin Endocrinol Metab 92(6):2130–2135

    Article  CAS  PubMed  Google Scholar 

  21. Hannan MT, Litman HJ, Araujo AB, McLennan CE, McLean RR, McKinlay JB et al (2008) Serum 25-hydroxyvitamin D and bone mineral density in a racially and ethnically diverse group of men. J Clin Endocrinol Metab 93(1):40–46

    Article  CAS  PubMed  Google Scholar 

  22. Cauley JA, Lui LY, Ensrud KE, Zmuda JM, Stone KL, Hochberg MC et al (2005) Bone mineral density and the risk of incident nonspinal fractures in black and white women. JAMA 293(17):2102–2108

    Article  CAS  PubMed  Google Scholar 

  23. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M et al (2013) Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med 369(21):1991–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rosen CJ, Abrams SA, Aloia JF, Brannon PM, Clinton SK, Durazo-Arvizu RA et al (2012) IOM committee members respond to Endocrine Society vitamin D guideline. J Clin Endocrinol Metab 97(4):1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96(1):53–58

    Article  CAS  PubMed  Google Scholar 

  26. Grant WB, Karras SN, Bischoff-Ferrari HA, Annweiler C, Boucher BJ, Juzeniene A et al (2016) Do studies reporting “U”-shaped serum 25-hydroxyvitamin D-health outcome relationships reflect adverse effects? Dermatoendocrinol 8(1):e1187349

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kristinsson SY, Tang M, Pfeiffer RM, Bjorkholm M, Blimark C, Mellqvist UH et al (2010) Monoclonal gammopathy of undetermined significance and risk of skeletal fractures: a population-based study. Blood 116(15):2651–2655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gregersen H, Jensen P, Gislum M, Jorgensen B, Sorensen HT, Norgaard M (2006) Fracture risk in patients with monoclonal gammopathy of undetermined significance. Br J Haematol 135(1):62–67

    Article  PubMed  Google Scholar 

  29. Melton LJ 3rd, Rajkumar SV, Khosla S, Achenbach SJ, Oberg AL, Kyle RA (2004) Fracture risk in monoclonal gammopathy of undetermined significance. J Bone Miner Res 19(1):25–30

    Article  PubMed  Google Scholar 

  30. Melton LJ 3rd, Kyle RA, Achenbach SJ, Oberg AL, Rajkumar SV (2005) Fracture risk with multiple myeloma: a population-based study. J Bone Miner Res 20(3):487–493

    Article  PubMed  Google Scholar 

  31. Annibali O, Petrucci MT, Del Bianco P, Gallucci C, Levi A, Foa R et al (2006) IgM multiple myeloma: report of four cases and review of the literature. Leuk Lymphoma 47(8):1565–1569

    Article  PubMed  Google Scholar 

  32. Abrahamsen B, Andersen I, Christensen SS, Skov Madsen J, Brixen K (2005) Utility of testing for monoclonal bands in serum of patients with suspected osteoporosis: retrospective, cross sectional study. BMJ 330(7495):818

    Article  PubMed  PubMed Central  Google Scholar 

  33. Golombick T, Diamond T (2008) Prevalence of monoclonal gammopathy of undetermined significance/myeloma in patients with acute osteoporotic vertebral fractures. Acta Haematol 120(2):87–90

    Article  PubMed  Google Scholar 

  34. Pepe J, Petrucci MT, Nofroni I, Fassino V, Diacinti D, Romagnoli E et al (2006) Lumbar bone mineral density as the major factor determining increased prevalence of vertebral fractures in monoclonal gammopathy of undetermined significance. Br J Haematol 134(5):485–490

    Article  PubMed  Google Scholar 

  35. Ng AC, Khosla S, Charatcharoenwitthaya N, Kumar SK, Achenbach SJ, Holets MF et al (2011) Bone microstructural changes revealed by high-resolution peripheral quantitative computed tomography imaging and elevated DKK1 and MIP-1alpha levels in patients with MGUS. Blood 118(25):6529–6534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Farr JN, Zhang W, Kumar SK, Jacques RM, Ng AC, McCready LK et al (2014) Altered cortical microarchitecture in patients with monoclonal gammopathy of undetermined significance. Blood 123(5):647–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  CAS  PubMed  Google Scholar 

  38. Terpos E, Christoulas D, Katodritou E, Bratengeier C, Gkotzamanidou M, Michalis E et al (2012) Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. Int J Cancer 131(6):1466–1471

    Article  CAS  PubMed  Google Scholar 

  39. Terpos E, Szydlo R, Apperley JF, Hatjiharissi E, Politou M, Meletis J et al (2003) Soluble receptor activator of nuclear factor kappa B ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102(3):1064–1069

    Article  CAS  PubMed  Google Scholar 

  40. Drake MT (2014) Unveiling skeletal fragility in patients diagnosed with MGUS: no longer a condition of undetermined significance? J Bone Miner Res 29(12):2529–2533

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lauter B, Schmidt-Wolf IG (2015) Prevalence, supplementation, and impact of vitamin D deficiency in multiple myeloma patients. Cancer Investig 33(10):505–509

    Article  CAS  Google Scholar 

  42. Hudzik S, Snoad B, Mousa L, Sborov DW, Williams N, Jones D et al (2015) The majority of myeloma patients are vitamin D deficient, unrelated to survival or cytogenetics. Blood 126:5336

    Google Scholar 

  43. Badros A, Goloubeva O, Terpos E, Milliron T, Baer MR, Streeten E (2008) Prevalence and significance of vitamin D deficiency in multiple myeloma patients. Br J Haematol 142(3):492–494

    Article  PubMed  Google Scholar 

  44. Ng AC, Kumar SK, Rajkumar SV, Drake MT (2009) Impact of vitamin D deficiency on the clinical presentation and prognosis of patients with newly diagnosed multiple myeloma. Am J Hematol 84(7):397–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Terpos E, Morgan G, Dimopoulos MA, Drake MT, Lentzsch S, Raje N et al (2013) International myeloma working group recommendations for the treatment of multiple myeloma-related bone disease. J Clin Oncol 31(18):2347–2357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nickolas TL, Leonard MB, Shane E (2008) Chronic kidney disease and bone fracture: a growing concern. Kidney Int 74(6):721–731

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bailie GR, Massry SG, National Kidney Foundation (2005) Clinical practice guidelines for bone metabolism and disease in chronic kidney disease: an overview. Pharmacotherapy 25(12):1687–1707

    Article  CAS  PubMed  Google Scholar 

  48. Pepe J, Petrucci MT, Mascia ML, Piemonte S, Fassino V, Romagnoli E et al (2008) The effects of alendronate treatment in osteoporotic patients affected by monoclonal gammopathy of undetermined significance. Calcif Tissue Int 82(6):418–426

    Article  CAS  PubMed  Google Scholar 

  49. Berenson JR, Yellin O, Boccia RV, Flam M, Wong SF, Batuman O et al (2008) Zoledronic acid markedly improves bone mineral density for patients with monoclonal gammopathy of undetermined significance and bone loss. Clin Cancer Res 14(19):6289–6295

    Article  CAS  PubMed  Google Scholar 

  50. Morgan GJ, Davies FE, Gregory WM, Cocks K, Bell SE, Szubert AJ et al (2010) First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC myeloma IX): a randomised controlled trial. Lancet 376(9757):1989–1999

    Article  CAS  PubMed  Google Scholar 

  51. Musto P, Petrucci MT, Bringhen S, Guglielmelli T, Caravita T, Bongarzoni V et al (2008) A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma. Cancer 113(7):1588–1595

    Article  PubMed  Google Scholar 

  52. Wei R, Christakos S (2015) Mechanisms underlying the regulation of innate and adaptive immunity by vitamin D. Nutrients 7(10):8251–8260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leung KH (1989) Inhibition of human natural killer cell and lymphokine-activated killer cell cytotoxicity and differentiation by vitamin D3. Scand J Immunol 30(2):199–208

    Article  CAS  PubMed  Google Scholar 

  54. Weeres MA, Robien K, Ahn YO, Neulen ML, Bergerson R, Miller JS et al (2014) The effects of 1, 25-dihydroxyvitamin D3 on in vitro human NK cell development from hematopoietic stem cells. J Immunol 193(7):3456–3462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Griffin MD, Lutz WH, Phan VA, Bachman LA, McKean DJ, Kumar R (2000) Potent inhibition of dendritic cell differentiation and maturation by vitamin D analogs. Biochem Biophys Res Commun 270(3):701–708

    Article  CAS  PubMed  Google Scholar 

  56. Penna G, Adorini L (2000) 1 alpha, 25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164(5):2405–2411

    Article  CAS  PubMed  Google Scholar 

  57. Piemonti L, Monti P, Sironi M, Fraticelli P, Leone BE, Dal Cin E et al (2000) Vitamin D3 affects differentiation, maturation, and function of human monocyte-derived dendritic cells. J Immunol 164(9):4443–4451

    Article  CAS  PubMed  Google Scholar 

  58. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C (2010) Vitamin D: modulator of the immune system. Curr Opin Pharmacol 10(4):482–496

    Article  CAS  PubMed  Google Scholar 

  59. Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE (2007) Modulatory effects of 1, 25-dihydroxyvitamin D3 on human B cell differentiation. J Immunol 179(3):1634–1647

    Article  CAS  PubMed  Google Scholar 

  60. Wiers K, Wright MA, Vellody K, Young MR (1998) Failure of tumor-reactive lymph node cells to kill tumor in the presence of immune-suppressive CD34+ cells can be overcome with vitamin D3 treatment to diminish CD34+ cell levels. Clin Exp Metastasis 16(3):275–282

    Article  CAS  PubMed  Google Scholar 

  61. Wiers KM, Lathers DM, Wright MA, Young MR (2000) Vitamin D3 treatment to diminish the levels of immune suppressive CD34+ cells increases the effectiveness of adoptive immunotherapy. J Immunother 23(1):115–124

    Article  CAS  PubMed  Google Scholar 

  62. Dosani T, Carlsten M, Maric I, Landgren O (2015) The cellular immune system in myelomagenesis: NK cells and T cells in the development of myeloma [corrected] and their uses in immunotherapies. Blood Cancer J 5:e306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Favaloro J, Brown R, Aklilu E, Yang S, Suen H, Hart D et al (2014) Myeloma skews regulatory T and pro-inflammatory T helper 17 cell balance in favor of a suppressive state. Leuk Lymphoma 55(5):1090–1098

    Article  CAS  PubMed  Google Scholar 

  64. Bryant C, Suen H, Brown R, Yang S, Favaloro J, Aklilu E et al (2013) Long-term survival in multiple myeloma is associated with a distinct immunological profile, which includes proliferative cytotoxic T-cell clones and a favourable Treg/Th17 balance. Blood Cancer J 3:e148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24(3):312–317

    Article  PubMed  Google Scholar 

  66. Osterborg A, Nilsson B, Bjorkholm M, Holm G, Mellstedt H (1990) Natural killer cell activity in monoclonal gammopathies: relation to disease activity. Eur J Haematol 45(3):153–157

    Article  CAS  PubMed  Google Scholar 

  67. Mentlik James A, Cohen AD, Campbell KS (2013) Combination immune therapies to enhance anti-tumor responses by NK cells. Front Immunol 4:481

    Article  PubMed  PubMed Central  Google Scholar 

  68. Malek E, de Lima M, Letterio JJ, Kim BG, Finke JH, Driscoll JJ et al (2016) Myeloid-derived suppressor cells: the green light for myeloma immune escape. Blood Rev 12

  69. Gorgun GT, Whitehill G, Anderson JL, Hideshima T, Maguire C, Laubach J et al (2013) Tumor-promoting immune-suppressive myeloid-derived suppressor cells in the multiple myeloma microenvironment in humans. Blood 121(15):2975–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rossi JF, Durie BG, Duperray C, Braich T, Marion SL, Pike JW et al (1988) Phenotypic and functional analysis of 1, 25-dihydroxyvitamin D3 receptor mediated modulation of the human myeloma cell line RPMI 8226. Cancer Res 48(5):1213–1216

    CAS  PubMed  Google Scholar 

  71. Puthier D, Bataille R, Barille S, Mellerin MP, Harousseau JL, Ponzio A et al (1996) Myeloma cell growth arrest, apoptosis, and interleukin-6 receptor modulation induced by EB 1089, a vitamin D3 derivative, alone or in association with dexamethasone. Blood 88(12):4659–4666

    CAS  PubMed  Google Scholar 

  72. Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181(1):8–18

    Article  CAS  PubMed  Google Scholar 

  73. Lemire JM, Archer DC (1991) 1, 25-Dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest 87(3):1103–1107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cantorna MT, Hayes CE, DeLuca HF (1996) 1, 25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci U S A 93(15):7861–7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) Serum 25-hydroxyvitamin D levels and risk of multiple sclerosis. JAMA 296(23):2832–2838

    Article  CAS  PubMed  Google Scholar 

  76. Ascherio A, Munger KL, White R, Kochert K, Simon KC, Polman CH et al (2014) Vitamin D as an early predictor of multiple sclerosis activity and progression. JAMA Neurol 71(3):306–314

    Article  PubMed  PubMed Central  Google Scholar 

  77. Noonan K, Marchionni L, Anderson J, Pardoll D, Roodman GD, Borrello I (2010) A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116(18):3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W et al (2010) Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115(26):5385–5392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lips P, Gielen E, van Schoor NM (2014) Vitamin D supplements with or without calcium to prevent fractures. Bonekey Rep 3:512

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge Dr. Susan Ott for the helpful discussions and thoughtful review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Burwick.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burwick, N. Vitamin D and plasma cell dyscrasias: reviewing the significance. Ann Hematol 96, 1271–1277 (2017). https://doi.org/10.1007/s00277-017-3016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00277-017-3016-8

Keywords

Navigation