Annals of Hematology

, Volume 96, Issue 2, pp 189–198 | Cite as

Microparticles from splenectomized β-thalassemia/HbE patients play roles on procoagulant activities with thrombotic potential

  • Phatchanat Klaihmon
  • Kunwadee Phongpao
  • Wasinee Kheansaard
  • Egarit Noulsri
  • Archrob Khuhapinant
  • Suthat Fucharoen
  • Noppawan Phumala Morales
  • Saovaros Svasti
  • Kovit Pattanapanyasat
  • Pornthip Chaichompoo
Original Article


Thromboembolic events including cerebral thrombosis, deep vein thrombosis, and pulmonary embolism are major complications in β-thalassemia. Damaged red blood cells and chronic platelet activation in splenectomized β-thalassemia/HbE patients were associated with increased microparticles (MPs) releases into blood circulation. MPs are small membrane vesicles, which play important roles on coagulation. However, the role of MP in thalassemia is poorly understood. In this study, the effects of splenectomized-MPs on platelet activation and aggregation were investigated. The results showed that isolated MPs from fresh platelet-free plasma of patients and normal subjects directly induce platelet activation, platelet aggregation, and platelet-neutrophil aggregation in a dose-dependent manner. Interestingly, MPs obtained from splenectomized patients are more efficient in induction of platelet activation (P-selectin+) when compared to MPs from normal subjects (P < 0.05), tenfold lower than pathophysiological level, at 1:0.1 platelet MP ratio. Co-incubation of splenectomized-MPs with either normal-, non-splenectomized- or splenectomized-platelets at 1:10 platelet MP ratio increased platelet activation up to 5.1 ± 2.2, 5.6 ± 3.7, and 9.5 ± 3.0%, respectively, when normalized with individual baseline. These findings suggest that splenectomized patients were proned to be activated by MPs, and splenectomized-MPs could play an important role on chronic platelet activation and aggregation, leading to thrombus formation in β-thalassemia/HbE patients.


Microparticles Platelet-leukocyte aggregation Coagulation Thrombosis Thalassemia 





platelet-poor plasma


platelet-rich plasma




P-selectin glycoprotein ligand-1


  1. 1.
    Burnier L, Fontana P, Kwak BR, Angelillo-Scherrer A (2009) Cell-derived microparticles in haemostasis and vascular medicine. Thromb Haemost 101(3):439–451PubMedGoogle Scholar
  2. 2.
    Freyssinet JM, Toti F (2010) Formation of procoagulant microparticles and properties. Thromb Res 125(Suppl 1):S46–S48. doi:10.1016/j.thromres.2010.01.036 CrossRefPubMedGoogle Scholar
  3. 3.
    Rak J (2010) Microparticles in cancer. Semin Thromb Hemost 36(8):888–906. doi:10.1055/s-0030-1267043 CrossRefPubMedGoogle Scholar
  4. 4.
    Horstman LL, Ahn YS (1999) Platelet microparticles: a wide-angle perspective. Crit Rev Oncol Hematol 30(2):111–142CrossRefPubMedGoogle Scholar
  5. 5.
    Berckmans RJ, Nieuwland R, Boing AN, Romijn FP, Hack CE, Sturk A (2001) Cell-derived microparticles circulate in healthy humans and support low grade thrombin generation. Thromb Haemost 85(4):639–646PubMedGoogle Scholar
  6. 6.
    Piccin A, Murphy WG, Smith OP (2007) Circulating microparticles: pathophysiology and clinical implications. Blood Rev 21(3):157–171. doi:10.1016/j.blre.2006.09.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Simak J, Gelderman MP (2006) Cell membrane microparticles in blood and blood products: potentially pathogenic agents and diagnostic markers. Transfus Med Rev 20(1):1–26. doi:10.1016/j.tmrv.2005.08.001 CrossRefPubMedGoogle Scholar
  8. 8.
    van Beers EJ, Schaap MC, Berckmans RJ, Nieuwland R, Sturk A, van Doormaal FF, Meijers JC, Biemond BJ (2009) Circulating erythrocyte-derived microparticles are associated with coagulation activation in sickle cell disease. Haematologica 94(11):1513–1519. doi:10.3324/haematol.2009.008938 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Tomer A, Harker LA, Kasey S, Eckman JR (2001) Thrombogenesis in sickle cell disease. J Lab Clin Med 137(6):398–407. doi:10.1067/mlc.2001.115450 CrossRefPubMedGoogle Scholar
  10. 10.
    Pattanapanyasat K, Noulsri E, Fucharoen S, Lerdwana S, Lamchiagdhase P, Siritanaratkul N, Webster HK (2004) Flow cytometric quantitation of red blood cell vesicles in thalassemia. Cytometry B Clin Cytom 57(1):23–31. doi:10.1002/cyto.b.10064 CrossRefPubMedGoogle Scholar
  11. 11.
    Westerman M, Pizzey A, Hirschman J, Cerino M, Weil-Weiner Y, Ramotar P, Eze A, Lawrie A, Purdy G, Mackie I, Porter J (2008) Microvesicles in haemoglobinopathies offer insights into mechanisms of hypercoagulability, haemolysis and the effects of therapy. Br J Haematol 142(1):126–135. doi:10.1111/j.1365-2141.2008.07155.x CrossRefPubMedGoogle Scholar
  12. 12.
    Habib A, Kunzelmann C, Shamseddeen W, Zobairi F, Freyssinet JM, Taher A (2008) Elevated levels of circulating procoagulant microparticles in patients with beta-thalassemia intermedia. Haematologica 93(6):941–942. doi:10.3324/haematol.12460 CrossRefPubMedGoogle Scholar
  13. 13.
    Pattanapanyasat K, Gonwong S, Chaichompoo P, Noulsri E, Lerdwana S, Sukapirom K, Siritanaratkul N, Fucharoen S (2007) Activated platelet-derived microparticles in thalassaemia. Br J Haematol 136(3):462–471CrossRefPubMedGoogle Scholar
  14. 14.
    Chaichompoo P, Kumya P, Khowawisetsut L, Chiangjong W, Chaiyarit S, Pongsakul N, Sirithanaratanakul N, Fucharoen S, Thongboonkerd V, Pattanapanyasat K (2012) Characterizations and proteome analysis of platelet-free plasma-derived microparticles in beta-thalassemia/hemoglobin E patients. J Proteome 76 :239–250. doi:10.1016/j.jprot.2012.06.004Spec NoCrossRefGoogle Scholar
  15. 15.
    Ruggeri ZM (2002) Platelets in atherothrombosis. Nat Med 8(11):1227–1234. doi:10.1038/nm1102-1227 CrossRefPubMedGoogle Scholar
  16. 16.
    Joseph M (1995) The generation of free radicals by blood platelets. Immunopharmacology of platelets. In. Academic Press, San Diego, pp. 209–223Google Scholar
  17. 17.
    Michelson AD (2003) How platelets work: platelet function and dysfunction. J Thromb Thrombolysis 16(1–2):7–12. doi:10.1023/b:thro.0000014586.77684.82 CrossRefPubMedGoogle Scholar
  18. 18.
    Furie B, Furie BC, Flaumenhaft R (2001) A journey with platelet P-selectin: the molecular basis of granule secretion, signalling and cell adhesion. Thromb Haemost 86(1):214–221PubMedGoogle Scholar
  19. 19.
    Furman MI, Barnard MR, Krueger LA, Fox ML, Shilale EA, Lessard DM, Marchese P, Frelinger AL 3rd, Goldberg RJ, Michelson AD (2001) Circulating monocyte-platelet aggregates are an early marker of acute myocardial infarction. J Am Coll Cardiol 38(4):1002–1006CrossRefPubMedGoogle Scholar
  20. 20.
    Gawaz M, Neumann FJ, Ott I, Schiessler A, Schomig A (1996) Platelet function in acute myocardial infarction treated with direct angioplasty. Circulation 93(2):229–237CrossRefPubMedGoogle Scholar
  21. 21.
    Marquardt L, Ruf A, Mansmann U, Winter R, Schuler M, Buggle F, Mayer H, Grau AJ (2002) Course of platelet activation markers after ischemic stroke. Stroke; a journal of cerebral circulation 33(11):2570–2574CrossRefGoogle Scholar
  22. 22.
    Keawvichit R, Khowawisetsut L, Chaichompoo P, Polsrila K, Sukklad S, Sukapirom K, Khuhapinant A, Fucharoen S, Pattanapanyasat K (2012) Platelet activation and platelet-leukocyte interaction in beta-thalassemia/hemoglobin E patients with marked nucleated erythrocytosis. Ann Hematol 91(11):1685–1694. doi:10.1007/s00277-012-1522-2 CrossRefPubMedGoogle Scholar
  23. 23.
    Srihirun S, Tanjararak N, Chuncharunee S, Sritara P, Kaewvichit R, Fucharoen S, Pattanapanyasat K, Sibmooh N (2015) Platelet hyperactivity in thalassemia patients with elevated tricuspid regurgitant velocity and the association with hemolysis. Thromb Res 135(1):121–126. doi:10.1016/j.thromres.2014.10.010 CrossRefPubMedGoogle Scholar
  24. 24.
    Taher AT, Musallam KM, Karimi M, El-Beshlawy A, Belhoul K, Daar S, Saned M, Cesaretti C, Cappellini MD (2010) Splenectomy and thrombosis: the case of thalassemia intermedia. Journal of thrombosis and haemostasis : JTH 8(10):2152–2158. doi:10.1111/j.1538-7836.2010.03940.x CrossRefPubMedGoogle Scholar
  25. 25.
    Mause SF, Weber C (2010) Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ Res 107(9):1047–1057. doi:10.1161/circresaha.110.226456 CrossRefPubMedGoogle Scholar
  26. 26.
    Montoro-Garcia S, Shantsila E, Marin F, Blann A, Lip GY (2011) Circulating microparticles: new insights into the biochemical basis of microparticle release and activity. Basic Res Cardiol 106(6):911–923. doi:10.1007/s00395-011-0198-4 CrossRefPubMedGoogle Scholar
  27. 27.
    Musallam KM, Taher AT, Karimi M, Rachmilewitz EA (2012) Cerebral infarction in beta-thalassemia intermedia: breaking the silence. Thromb Res 130(5):695–702. doi:10.1016/j.thromres.2012.07.013 CrossRefPubMedGoogle Scholar
  28. 28.
    Taher A, Isma'eel H, Mehio G, Bignamini D, Kattamis A, Rachmilewitz EA, Cappellini MD (2006) Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the Mediterranean area and Iran. Thromb Haemost 96(4):488–491PubMedGoogle Scholar
  29. 29.
    Eldor A, Rachmilewitz EA (2002) The hypercoagulable state in thalassemia. Blood 99(1):36–43CrossRefPubMedGoogle Scholar
  30. 30.
    Atichartakarn V, Angchaisuksiri P, Aryurachai K, Onpun S, Chuncharunee S, Thakkinstian A, Atamasirikul K (2002) Relationship between hypercoagulable state and erythrocyte phosphatidylserine exposure in splenectomized haemoglobin E/beta-thalassaemic patients. Br J Haematol 118(3):893–898CrossRefPubMedGoogle Scholar
  31. 31.
    Forlow SB, McEver RP, Nollert MU (2000) Leukocyte-leukocyte interactions mediated by platelet microparticles under flow. Blood 95(4):1317–1323PubMedGoogle Scholar
  32. 32.
    Gao Y, Lv L, Liu S, Ma G, Su Y (2013) Elevated levels of thrombin-generating microparticles in stored red blood cells. Vox Sang 105(1):11–17. doi:10.1111/vox.12014 CrossRefPubMedGoogle Scholar
  33. 33.
    Donadee C, Raat NJ, Kanias T, Tejero J, Lee JS, Kelley EE, Zhao X, Liu C, Reynolds H, Azarov I, Frizzell S, Meyer EM, Donnenberg AD, Qu L, Triulzi D, Kim-Shapiro DB, Gladwin MT (2011) Nitric oxide scavenging by red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion. Circulation 124(4):465–476. doi:10.1161/CIRCULATIONAHA.110.008698 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Phatchanat Klaihmon
    • 1
  • Kunwadee Phongpao
    • 2
    • 3
  • Wasinee Kheansaard
    • 2
    • 4
  • Egarit Noulsri
    • 1
  • Archrob Khuhapinant
    • 5
  • Suthat Fucharoen
    • 2
  • Noppawan Phumala Morales
    • 6
  • Saovaros Svasti
    • 2
    • 3
    • 4
  • Kovit Pattanapanyasat
    • 1
  • Pornthip Chaichompoo
    • 7
  1. 1.Department of Immunology and Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  2. 2.Thalassemia Research Center, Institute of Molecular BiosciencesMahidol UniversityNakhon PathomThailand
  3. 3.Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
  4. 4.Molecular Medicine Graduate Program, Faculty of ScienceMahidol UniversityBangkokThailand
  5. 5.Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
  6. 6.Department of Pharmacology, Faculty of ScienceMahidol UniversityBangkokThailand
  7. 7.Department of Pathobiology, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations