Advertisement

Annals of Hematology

, Volume 95, Issue 8, pp 1211–1221 | Cite as

BCR-ABL-positive acute myeloid leukemia: a new entity? Analysis of clinical and molecular features

  • Nina Rosa Neuendorff
  • Thomas Burmeister
  • Bernd Dörken
  • Jörg Westermann
Original Article

Abstract

BCR-ABL-positive acute myeloid leukemia (AML) is a rare subtype of AML that is now included as a provisional entity in the 2016 revised WHO classification of myeloid malignancies. Since a clear distinction between de novo BCR-ABL+ AML and chronic myeloid leukemia (CML) blast crisis is challenging in many cases, the existence of de novo BCR-ABL+ AML has been a matter of debate for a long time. However, there is increasing evidence suggesting that BCR-ABL+ AML is in fact a distinct subgroup of AML. In this study, we analyzed all published cases since 1975 as well as cases from our institution in order to present common clinical and molecular features of this rare disease. Our analysis shows that BCR-ABL predominantly occurs in AML-NOS, CBF leukemia, and AML with myelodysplasia-related changes. The most common BCR-ABL transcripts (p190 and p210) are nearly equally distributed. Based on the analysis of published data, we provide a clinical algorithm for the initial differential diagnosis of BCR-ABL+ AML. The prognosis of BCR-ABL+ AML seems to depend on the cytogenetic and/or molecular background rather than on BCR-ABL itself. A therapy with tyrosine kinase inhibitors (TKIs) such as imatinib, dasatinib, or nilotinib is reasonable, but—due to a lack of systematic clinical data—their use cannot be routinely recommended in first-line therapy. Beyond first-line treatment of AML, the use of TKI remains an individual decision, both in combination with intensive chemotherapy and/or as a bridge to allogeneic stem cell transplantation. In each single case, potential benefits have to be weighed against potential risks.

Keywords

BCR-ABL Acute myeloid leukemia Chronic myeloid leukemia Tyrosine kinase inhibitor 

Notes

Compliance with ethical standards

Funding

This work was not supported by any grant.

Conflict of interest

J.W. receives research support and/or honoraria from Novartis, BMS, and Celgene; T.B. received research support from Novartis; N.R.N. receives a scholarship from Medac. Bernd Dörken declares that he has no conflicts of interest.

Supplementary material

277_2016_2721_MOESM1_ESM.pdf (611 kb)
ESM 1 (PDF 611 kb)

References

  1. 1.
    Konoplev S, Yin CC, Kornblau SM, Kantarjian HM, Konopleva M, Andreeff M, Lu G, Zuo Z, Luthra R, Medeiros LJ, Bueso-Ramos CE (2013) Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma. doi: 10.3109/10428194.2012.701739 PubMedCentralGoogle Scholar
  2. 2.
    Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK, National Cancer Research Institute Adult Leukaemia Working Group (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. doi: 10.1182/blood-2009-11-254441 PubMedCentralGoogle Scholar
  3. 3.
    Keung YK, Beaty M, Powell BL, Molnar I, Buss D, Pettenati M (2004) Philadelphia chromosome positive myelodysplastic syndrome and acute myeloid leukemia-retrospective study and review of literature. Leuk Res 28(6):579–586CrossRefPubMedGoogle Scholar
  4. 4.
    Soupir CP, Vergilio JA, Dal Cin P, Muzikansky A, Kantarjian H, Jones D, Hasserjian RP (2007) Philadelphia chromosome-positive acute myeloid leukemia: a rare aggressive leukemia with clinicopathologic features distinct from chronic myeloid leukemia in myeloid blast crisis. Am J Clin Pathol 127(4):642–650CrossRefPubMedGoogle Scholar
  5. 5.
    Berger R (1993) Differences between blastic chronic myeloid leukemia and Ph-positive acute leukemia. Leuk Lymphoma 11(Suppl 1):235–237CrossRefPubMedGoogle Scholar
  6. 6.
    Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW (2016) The 2016 revision to the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia. Blood.Google Scholar
  7. 7.
    Grove CS, Vassiliou GS (2014) Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Dis Model Mech. doi: 10.1242/dmm.015974 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, Carter SL, Stewart C, Mermel CH, Roberts SA, Kiezun A, Hammerman PS, McKenna A, Drier Y, Zou L, Ramos AH, Pugh TJ, Stransky N, Helman E, Kim J, Sougnez C, Ambrogio L, Nickerson E, Shefler E, Cortés ML, Auclair D, Saksena G, Voet D, Noble M, DiCara D, Lin P, Lichtenstein L, Heiman DI, Fennell T, Imielinski M, Hernandez B, Hodis E, Baca S, Dulak AM, Lohr J, Landau DA, Wu CJ, Melendez-Zajgla J, Hidalgo-Miranda A, Koren A, McCarroll SA, Mora J, Lee RS, Crompton B, Onofrio R, Parkin M, Winckler W, Ardlie K, Gabriel SB, Roberts CW, Biegel JA, Stegmaier K, Bass AJ, Garraway LA, Meyerson M, Golub TR, Gordenin DA, Sunyaev S, Lander ES, Getz G (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. doi: 10.1038/nature12213 Google Scholar
  9. 9.
    Döhner H, Weisdorf DJ, Bloomfield CD (2015) Acute myeloid leukemia. N Engl J Med. doi: 10.1056/NEJMra1406184 PubMedCentralGoogle Scholar
  10. 10.
    Gilliland DG (2002) Molecular genetics of human leukemias: new insights into therapy. Semin Hematol 39(4 Suppl 3):6–11CrossRefPubMedGoogle Scholar
  11. 11.
    Bacher U, Haferlach T, Alpermann T, Zenger M, Hochhaus A, Beelen DW, Uppenkamp M, Rummel M, Kern W, Schnittger S, Haferlach C (2011) Subclones with the t(9;22)/BCR-ABL1 rearrangement occur in AML and seem to cooperate with distinct genetic alterations. Br J Haematol. doi: 10.1111/j.1365-2141.2010.08472.x Google Scholar
  12. 12.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. doi: 10.1056/NEJMoa1408617 PubMedPubMedCentralGoogle Scholar
  13. 13.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, Chambert K, Mick E, Neale BM, Fromer M, Purcell SM, Svantesson O, Landén M, Höglund M, Lehmann S, Gabriel SB, Moran JL, Lander ES, Sullivan PF, Sklar P, Grönberg H, Hultman CM, McCarroll SA (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. doi: 10.1056/NEJMoa1409405 PubMedCentralGoogle Scholar
  14. 14.
    Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major bcr-abl gene expression at a very low level in blood cells of some healthy individuals. Blood 86(8):3118–3122PubMedGoogle Scholar
  15. 15.
    Ismail SI, Naffa RG, Yousef AM, Ghanim MT (2014) Incidence of bcr-abl fusion transcripts in healthy individuals. Mol Med Rep. doi: 10.3892/mmr.2014.1951 PubMedGoogle Scholar
  16. 16.
    Song J, Mercer D, Hu X, Liu H, Li MM (2011) Common leukemia- and lymphoma-associated genetic aberrations in healthy individuals. J Mol Diagn. doi: 10.1016/j.jmoldx.2010.10.009 Google Scholar
  17. 17.
    Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92(9):3362–3367PubMedGoogle Scholar
  18. 18.
    Wu Y, Slovak ML, Snyder DS, Arber DA (2006) Coexistence of inversion 16 and the Philadelphia chromosome in acute and chronic myeloid leukemias: report of six cases and review of literature. Am J Clin Pathol 125(2):260–266CrossRefPubMedGoogle Scholar
  19. 19.
    Ninomiya S, Kanemura N, Tsurumi H, Kasahara S, Hara T, Yamada T, Moriwaki H (2011) Coexistence of inversion 16 and the Philadelphia chromosome comprising P190 BCR-ABL in chronic myeloid leukemia blast crisis. Int J Hematol. doi: 10.1007/s12185-011-0854-3 Google Scholar
  20. 20.
    Secker-Walker LM, Morgan GJ, Min T, Swansbury GJ, Craig J, Yamada T, Desalvo L, Medina JW, Chowdhury V, Donahue RP (1992) Inversion of chromosome 16 with the Philadelphia chromosome in acute myelomonocytic leukemia with eosinophilia. Report of two cases. Cancer Genet Cytogenet 58(1):29–34CrossRefPubMedGoogle Scholar
  21. 21.
    Miura I, Takatsu H, Yamaguchi A, Hashimoto K, Nimura T, Nishinari T, Niitsu H, Miura AB (1994) Standard Ph chromosome, t(9;22)(q34;q11), as an additional change in a patient with acute myelomonocytic leukemia (M4Eo) associated with inv(16)(p13q22). Am J Hematol 45(1):94–96CrossRefPubMedGoogle Scholar
  22. 22.
    Siddiqui AD, Sheikh ZS, Liu D, Seiter K (2002) Coexistence of inversion 16 and the Philadelphia chromosome in patients with acute myelogenous leukemia. Leuk Lymphoma 43(5):1137–1140CrossRefPubMedGoogle Scholar
  23. 23.
    Tirado CA, Valdez F, Klesse L, Karandikar NJ, Uddin N, Arbini A, Fustino N, Collins R, Patel S, Smart RL, Garcia R, Doolittle J, Chen W (2010) Acute myeloid leukemia with inv(16) with CBFB-MYH11, 3'CBFB deletion, variant t(9;22) with BCR-ABL1, and del(7)(q22q32) in a pediatric patient: case report and literature review. Cancer Genet Cytogenet. doi: 10.1016/j.cancergencyto.2010.03.001 Google Scholar
  24. 24.
    Roth CG, Contis L, Gupta S, Agha M, Safyan E (2011) De novo acute myeloid leukemia with Philadelphia chromosome (BCR-ABL) and inversion 16 (CBFB-MYH11): report of two cases and review of the literature. Leuk Lymphoma. doi: 10.3109/10428194.2010.538941 PubMedGoogle Scholar
  25. 25.
    Dai HP, Xue YQ, Wu LL, Pan JL, Gong YL, Wu YF, Zhang J, Wu DP, Chen SN (2012) p210 BCR-ABL1 as a secondary change in a patient with acute myelomonocytic leukemia (M4Eo) with inv(16). Int J Hematol. doi: 10.1007/s12185-012-1190-y PubMedGoogle Scholar
  26. 26.
    Svaldi M, Lanthaler A, Venturi R, Coser P, Mitterer M (2001) Simultaneous occurrence of bcr-abl and inv16 in a case of M1 acute myeloid leukemia. Leukemia 15(4):695CrossRefPubMedGoogle Scholar
  27. 27.
    Mecucci C, Noens L, Aventin A, Testoni N, Van den Berghe H (1988) Philadelphia-positive acute myelomonocytic leukemia with inversion of chromosome 16 and eosinobasophils. Am J Hematol 27(1):69–71CrossRefPubMedGoogle Scholar
  28. 28.
    Cividin M, Brizard F, Sorel N, Renaud M, Guilhot F, Brizard A (2004) p190(BCR-ABL) rearrangement as a secondary change in a case of acute myelo-monocytic leukemia with inv(16)(p13q22). Leuk Res 28(1):97–99CrossRefPubMedGoogle Scholar
  29. 29.
    Preudhomme C, Lai JL, Plantier I, Demory JL, Zandecki M, Fenaux P (1992) Cytogenetic and molecular remission in a case of acute myeloid leukaemia(AML) with inversion of chromosome 16 (inv(16)) and Philadelphia chromosome (Ph). Br J Haematol 82(3):623–626CrossRefPubMedGoogle Scholar
  30. 30.
    Cho BS, Kim HJ, Lee S, Eom KS, Min WS, Lee JW, Kim CC (2007) Successful interim therapy with imatinib prior to allogeneic stem cell transplantation in Philadelphia chromosome-positive acute myeloid leukemia. Eur J Haematol 79(2):170–173CrossRefPubMedGoogle Scholar
  31. 31.
    Dallorso S, Sessarego M, Garré ML, Haupt R, Pasino M, Sansone R (1990) Secondary acute promyelocytic leukemia with t(8;21) and t(9;22) at onset and loss of the Philadelphia chromosome at relapse. Cancer Genet Cytogenet 47(1):41–46CrossRefPubMedGoogle Scholar
  32. 32.
    Verhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, Uitterlinden AG, Erpelinck CA, Delwel R, Löwenberg B, Valk PJ (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106(12):3747–3754CrossRefPubMedGoogle Scholar
  33. 33.
    Suzuki T, Kiyoi H, Ozeki K, Tomita A, Yamaji S, Suzuki R, Kodera Y, Miyawaki S, Asou N, Kuriyama K, Yagasaki F, Shimazaki C, Akiyama H, Nishimura M, Motoji T, Shinagawa K, Takeshita A, Ueda R, Kinoshita T, Emi N, Naoe T (2005) Clinical characteristics and prognostic implications of NPM1 mutations in acute myeloid leukemia. Blood 106(8):2854–2861CrossRefPubMedGoogle Scholar
  34. 34.
    Reboursiere E, Chantepie S, Gac AC, Reman O (2015) Rare but authentic Philadelphia-positive acute myeloblastic leukemia: two case reports and a literature review of characteristics, treatment and outcome. Hematol Oncol Stem Cell Ther. doi: 10.1016/j.hemonc.2014.09.002 PubMedGoogle Scholar
  35. 35.
    Mozziconacci MJ, Sainty D, Gabert J, Arnoulet C, Simonetti J, Toiron Y, Costello R, Hagemeijer A, Lafage-Pochitaloff M (1998) The Philadelphia chromosome as a secondary abnormality in two cases of acute myeloid leukemia. Br J Haematol 102(3):873–875CrossRefPubMedGoogle Scholar
  36. 36.
    Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, McMichael JF, Wallis JW, Lu C, Shen D, Harris CC, Dooling DJ, Fulton RS, Fulton LL, Chen K, Schmidt H, Kalicki-Veizer J, Magrini VJ, Cook L, McGrath SD, Vickery TL, Wendl MC, Heath S, Watson MA, Link DC, Tomasson MH, Shannon WD, Payton JE, Kulkarni S, Westervelt P, Walter MJ, Graubert TA, Mardis ER, Wilson RK, DiPersio JF (2012) Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. doi: 10.1038/nature10738 Google Scholar
  37. 37.
    Nacheva EP, Grace CD, Brazma D, Gancheva K, Howard-Reeves J, Rai L, Gale RE, Linch DC, Hills RK, Russell N, Burnett AK, Kottaridis PD (2013) Does BCR-ABL1 positive acute myeloid leukaemia exist? Br J Haematol. doi: 10.1111/bjh.12301 Google Scholar
  38. 38.
    Nacheva EP, Brazma D, Virgili A, Howard-Reeves J, Chanalaris A, Gancheva K, Apostolova M, Valgañon M, Mazzullo H, Grace C (2010) Deletions of immunoglobulin heavy chain and T cell receptor gene regions are uniquely associated with lymphoid blast transformation of chronic myeloid leukemia. BMC Genomics. doi: 10.1186/1471-2164-11-41 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Merzianu M, Medeiros LJ, Cortes J, Yin C, Lin P, Jones D, Glassman A, Kantarjian H, Huh Y (2005) inv(16)(p13q22) in chronic myelogenous leukemia in blast phase: a clinicopathologic, cytogenetic, and molecular study of five cases. Am J Clin Pathol 124(5):807–814CrossRefPubMedGoogle Scholar
  40. 40.
    Tsuboi K, Komatsu H, Miwa H, Iida S, Banno S, Wakita A, Nitta M, Ueda R (2002) Lymphoid blastic crisis of chronic myelogenous leukaemia with inv(16)(p13;q22). Leuk Res 26(8):771–774CrossRefPubMedGoogle Scholar
  41. 41.
    Evers JP, Bagg A, Himoe E, Zwiebel JA, Jacobson RJ (1992) Temporal association of marrow eosinophilia with inversion of chromosome 16 in recurrent blast crises of chronic myelogenous leukemia. Cancer Genet Cytogenet 62(2):134–139CrossRefPubMedGoogle Scholar
  42. 42.
    Asou N, Sanada I, Tanaka K, Hidaka M, Suzushima H, Matsuzaki H, Kawano F, Takatsuki K (1992) Inversion of chromosome 16 and bone marrow eosinophilia in a myelomonocytic transformation of chronic myeloid leukemia. Cancer Genet Cytogenet 61(2):197–200CrossRefPubMedGoogle Scholar
  43. 43.
    Heim S, Christensen BE, Fioretos T, Sørensen AG, Pedersen NT (1992) Acute myelomonocytic leukemia with inv(16)(p13q22) complicating Philadelphia chromosome positive chronic myeloid leukemia. Cancer Genet Cytogenet 59(1):35–38CrossRefPubMedGoogle Scholar
  44. 44.
    Patel BB, Mohamed AN, Schiffer CA (2006) "Acute myelogenous leukemia like" translocations in CML blast crisis: two new cases of inv(16)/t(16;16) and a review of the literature. Leuk Res 30(2):225–232CrossRefPubMedGoogle Scholar
  45. 45.
    Myint H, Ross FM, Hall JL, Hamblin TJ (1997) Early transformation to acute myeloblastic leukaemia with the acquisition of inv(16) in Ph positive chronic granulocytic leukaemia. Leuk Res 21(5):473–474CrossRefPubMedGoogle Scholar
  46. 46.
    Mohamed AN, Pemberton P, Zonder J, Schiffer CA (2003) The effect of imatinib mesylate on patients with Philadelphia chromosome-positive chronic myeloid leukemia with secondary chromosomal aberrations. Clin Cancer Res 9(4):1333–1337PubMedGoogle Scholar
  47. 47.
    Silva PM, Lourenço GJ, Bognone RA, Delamain MT, Pinto-Junior W, Lima CS (2006) Inherited pericentric inversion of chromosome 16 in chronic phase of chronic myeloid leukaemia. Leuk Res 30(1):115–117CrossRefPubMedGoogle Scholar
  48. 48.
    Colović M, Janković G, Bila J, Djordjević V, Wiernik PH (1998) Inversion of chromosome 16 in accelerated phase of chronic myeloid leukaemia: report of a case and review of the literature. Med Oncol 15(3):199–201CrossRefPubMedGoogle Scholar
  49. 49.
    Palmisano M, Grafone T, Ottaviani E, Testoni N, Baccarani M, Martinelli G (2007) NPM1 mutations are more stable than FLT3 mutations during the course of disease in patients with acute myeloid leukemia. Haematologica 92(9):1268–1269CrossRefPubMedGoogle Scholar
  50. 50.
    Kondo T, Tasaka T, Sano F, Matsuda K, Kubo Y, Matsuhashi Y, Nakanishi H, Sadahira Y, Wada H, Sugihara T, Tohyama K (2009) Philadelphia chromosome-positive acute myeloid leukemia (Ph + AML) treated with imatinib mesylate (IM): a report with IM plasma concentration and bcr-abl transcripts. Leuk Res. doi: 10.1016/j.leukres.2009.03.017 Google Scholar
  51. 51.
    Paietta E, Racevskis J, Bennett JM, Neuberg D, Cassileth PA, Rowe JM, Wiernik PH (1998) Biologic heterogeneity in Philadelphia chromosome-positive acute leukemia with myeloid morphology: the Eastern Cooperative Oncology Group experience. Leukemia 12(12):1881–1885CrossRefPubMedGoogle Scholar
  52. 52.
    Sindt A, Deau B, Brahim W, Staal A, Visanica S, Villarese P, Rault JP, Macintyre E, Delabesse E (2006) Acute monocytic leukemia with coexpression of minor BCR-ABL1 and PICALM-MLLT10 fusion genes along with overexpression of HOXA9. Genes Chromosom Cancer 45(6):575–582CrossRefPubMedGoogle Scholar
  53. 53.
    Smadja N, Krulik M, De Gramont A, Brissaud P, Debray J (1985) Acquisition of a Philadelphia chromosome concomitant with transformation of a refractory anemia into an acute leukemia. Cancer 55(7):1477–1481CrossRefPubMedGoogle Scholar
  54. 54.
    Kohn G, Manny N, Eldor A, Cohen MM (1975) De novo appearance of the ph-1 chromosome in a previously monosomic bone marrow (45,XX,-6): conversion of a myeloproliferative disorder to acute myelogenous leukemia. Blood 45(5):653–657PubMedGoogle Scholar
  55. 55.
    Katsuno M, Yamashita S, Sadamura S, Umemura T, Hirata J, Nishimura J, Nawata H (1994) Late-appearing Philadelphia chromosome in a patient with acute nonlymphocytic leukaemia derived from myelodysplastic syndrome: detection of P210- and P190-type BCR-ABL fusion gene transcripts at the leukaemic stage. Br J Haematol 87(1):51–56CrossRefPubMedGoogle Scholar
  56. 56.
    Hirsch-Ginsberg C, Childs C, Chang KS, Beran M, Cork A, Reuben J, Freireich EJ, Chang LC, Bollum FJ, Trujillo J, et al. (1988) Phenotypic and molecular heterogeneity in Philadelphia chromosome-positive acute leukemia. Blood 71(1):186–195PubMedGoogle Scholar
  57. 57.
    Maddox AM, Keating MJ, Trujillo J, Cork A, Youness E, Ahearn MJ, McCredie KB, Freireich EJ (1983) Philadelphia chromosome-positive adult acute leukemia with monosomy of chromosome number seven: a subgroup with poor response to therapy. Leuk Res 7(4):509–522CrossRefPubMedGoogle Scholar
  58. 58.
    Yamashita S, Umemura T, Sadamura S, Takahira H, Nishimura J, Nawata H, Katsuno M, Okamura J, Horibe K (1996) Acute leukemias expressing p210-and p 190-type BCR-ABL mRNAs: report of two cases and review of the literature. Acta Haematol 96(2):99–104CrossRefPubMedGoogle Scholar
  59. 59.
    Ohyashiki K, Kocova M, Ryan DH, Rowe JM, Sandberg AA (1986) Secondary acute myeloblastic leukemia with a Ph translocation in a treated Wegener's granulomatosis. Cancer Genet Cytogenet 19(3–4):331–333CrossRefPubMedGoogle Scholar
  60. 60.
    Ohyashiki K, Ohyashiki JH, Raza A, Preisler HD, Sandberg AA (1987) Phenylbutazone-induced myelodysplastic syndrome with Philadelphia translocation. Cancer Genet Cytogenet 26(2):213–216CrossRefPubMedGoogle Scholar
  61. 61.
    Lesesve JF, Troussard X, Bastard C, Hurst JP, Nouet D, Callat MP, Lenormand B, Piguet H, Flandrin G, Macintyre E (1996) p190BCR-ABL rearrangement in myelodysplastic syndromes: two reports and review of the literature. Br J Haematol 95(2):372–375CrossRefPubMedGoogle Scholar
  62. 62.
    Larripa I, Gutiérrez M, Giere I, Acevedo S, Bengió R, Slavutsky I (1992) Complex karyotype with PH1 chromosome in myelodysplasia: cytogenetic and molecular studies. Leuk Lymphoma 6:401–406CrossRefGoogle Scholar
  63. 63.
    Papageorgiou SG, Pappa V, Economopoulou C, Tsirigotis P, Konsioti F, Ionnidou ED, Chondropoulos S, Vasilatou D, Papageorgiou E, Economopoulos T, Dervenoulas J (2010) Dasatinib induces long-term remission in imatinib-resistant Philadelphia chromosome-positive acute megakaryoblastic leukemia but fails to prevent development of central nervous system progression. Leuk Res. doi: 10.1016/j.leukres.2010.03.032 Google Scholar
  64. 64.
    Fukunaga A, Sakoda H, Iwamoto Y, Inano S, Sueki Y, Yanagida S, Arima N (2013) Abrupt evolution of Philadelphia chromosome-positive acute myeloid leukemia in myelodysplastic syndrome. Eur J Haematol. doi: 10.1111/ejh.12056 PubMedGoogle Scholar
  65. 65.
    Isoda A, Nakahashi H, Hoshino T, Mitsui T, Yoshida Y (2007) Insufficient outcomes with imatinib mesylate: case report of Ph-positive acute myeloid leukemia evolving from myelodysplastic syndrome. Am J Hematol 82(6):501–502CrossRefPubMedGoogle Scholar
  66. 66.
    Kelemen K, Galani K, Conley CR, Greipp PT (2014) Secondary Philadelphia chromosome and erythrophagocytosis in a relapsed acute myeloid leukemia after hematopoietic cell transplantation. Cancer Genet. doi: 10.1016/j.cancergen.2014.05.013 PubMedPubMedCentralGoogle Scholar
  67. 67.
    Nakase K, Yamamoto Y, Morita K, Yamaguchi T, Nishii K, Shiku H (2006) Haunting appearance of BCR-ABL fusion gene products in a patient with therapy related leukaemia. Leuk Res 30(1):106–108CrossRefPubMedGoogle Scholar
  68. 68.
    Kurzrock R, Shtalrid M, Talpaz M, Kloetzer WS, Gutterman JU (1987) Expression of c-abl in Philadelphia-positive acute myelogenous leukemia. Blood 70(5):1584–1588PubMedGoogle Scholar
  69. 69.
    Alimena G, Cedrone M, Nanni M, De Cuia MR, Lo Coco F, De Sanctis V, Cimino G, Mancini M (1995) Acute leukemia presenting a variant Ph chromosome with p190 expression, dup 3q and -7, developed after malignant lymphoma treated with alkylating agents and topoisomerase II inhibitors. Leukemia 9(9):1483–1486PubMedGoogle Scholar
  70. 70.
    Han JY, Theil KS (2006) The Philadelphia chromosome as a secondary abnormality in inv(3)(q21q26) acute myeloid leukemia at diagnosis: confirmation of p190 BCR-ABL mRNA by real-time quantitative polymerase chain reaction. Cancer Genet Cytogenet 165(1):70–74CrossRefPubMedGoogle Scholar
  71. 71.
    Najfeld V, Geller M, Troy K, Scalise A (1998) Acquisition of the Ph chromosome and BCR-ABL fusion product in AML-M2 and t(8;21) leukemia: cytogenetic and FISH evidence for a late event. Leukemia 12(4):517–519CrossRefPubMedGoogle Scholar
  72. 72.
    Jacobsen RJ, Himoe E, Sacher RA, Shashaty GG (1986) Late appearance of Philadelphia chromosome. Br J Haematol 63(2):392–394CrossRefPubMedGoogle Scholar
  73. 73.
    Aoki J, Kakihana K, Kobayashi T, Hirashima Y, Akiyama H, Ohashi K, Sakamaki H (2012) Tyrosine kinase inhibitor therapy for acute myeloid leukemia with late-appearing Philadelphia chromosome. Leuk Res. doi: 10.1016/j.leukres.2011.10.008 PubMedCentralGoogle Scholar
  74. 74.
    Yagyu S, Morimoto A, Kakazu N, Tamura S, Fujiki A, Nakase Y, Iehara T, Hosoi H, Kuroda H (2008) Late appearance of a Philadelphia chromosome in a patient with therapy-related acute myeloid leukemia and high expression of EVI1. Cancer Genet Cytogenet. doi: 10.1016/j.cancergencyto.2007.09.023 PubMedGoogle Scholar
  75. 75.
    Shah N, Leaker MT, Teshima I, Baruchel S, Abdelhaleem M, Ye CC (2008) Late-appearing Philadelphia chromosome in childhood acute myeloid leukemia. Pediatr Blood Cancer. doi: 10.1002/pbc.21317 PubMedGoogle Scholar
  76. 76.
    Prebet T, Michallet AS, Charrin C, Hayette S, Magaud JP, Thiébaut A, Michallet M, Nicolini FE (2004) Secondary Philadelphia chromosome after non-myeloablative peripheral blood stem cell transplantation for a myelodysplastic syndrome in transformation. Bone Marrow Transplant 33(2):247–249CrossRefPubMedGoogle Scholar
  77. 77.
    Neuendorff NR, Schwarz M, Hemmati P, Türkmen S, Bommer C, Burmeister T, Dörken B, le Coutre P, Arnold R, Westermann J (2015) BCR-ABL1(+) acute myeloid leukemia: clonal selection of a BCR-ABL1(−) subclone as a cause of refractory disease with nilotinib treatment. Acta Haematol. doi: 10.1159/000368176 PubMedGoogle Scholar
  78. 78.
    Weinberg OK, Seetharam M, Ren L, Alizadeh A, Arber DA (2014) Mixed phenotype acute leukemia: a study of 61 cases using World Health Organization and European Group for the Immunological Classification of Leukaemias criteria. Am J Clin Pathol. doi: 10.1309/AJCPPVUPOTUVOIB5 Google Scholar
  79. 79.
    Heesch S, Neumann M, Schwartz S, Bartram I, Schlee C, Burmeister T, Hänel M, Ganser A, Heuser M, Wendtner CM, Berdel WE, Gökbuget N, Hoelzer D, Hofmann WK, Thiel E, Baldus CD (2013) Acute leukemias of ambiguous lineage in adults: molecular and clinical characterization. Ann Hematol. doi: 10.1007/s00277-013-1694-4 PubMedGoogle Scholar
  80. 80.
    Atfy M, Al Azizi NM, Elnaggar AM (2011) Incidence of Philadelphia-chromosome in acute myelogenous leukemia and biphenotypic acute leukemia patients: and its role in their outcome. Leuk Res. doi: 10.1016/j.leukres.2011.04.011 PubMedGoogle Scholar
  81. 81.
    Walter RB, Othus M, Burnett AK, Löwenberg B, Kantarjian HM, Ossenkoppele GJ, Hills RK, van Montfort KG, Ravandi F, Evans A, Pierce SR, Appelbaum FR, Estey EH (2013) Significance of FAB subclassification of "acute myeloid leukemia, NOS" in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. Blood. doi: 10.1182/blood-2012-10-462440 Google Scholar
  82. 82.
    Chen SJ, Flandrin G, Daniel MT, Valensi F, Baranger L, Grausz D, Bernheim A, Chen Z, Sigaux F, Berger R (1988) Philadelphia-positive acute leukemia: lineage promiscuity and inconsistently rearranged breakpoint cluster region. Leukemia 2(5):261–273PubMedGoogle Scholar
  83. 83.
    O’Donnell MR, Tallman MS et al (2016) NCCN Clinical Practise Guidelines in Oncology: AML. Version 1. Available at: NCCN.org
  84. 84.
    Röllig C, Bornhäuser M, Thiede C, Taube F, Kramer M, Mohr B, Aulitzky W, Bodenstein H, Tischler HJ, Stuhlmann R, Schuler U, Stölzel F, von Bonin M, Wandt H, Schäfer-Eckart K, Schaich M, Ehninger G (2011) Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J Clin Oncol. doi: 10.1200/JCO.2010.32.8500 Google Scholar
  85. 85.
    Bhatt VR, Akhtari M, Bociek RG, Sanmann JN, Yuan J, Dave BJ, Sanger WG, Kessinger A, Armitage JO (2014) Allogeneic stem cell transplantation for Philadelphia chromosome-positive acute myeloid leukemia. J Natl Compr Cancer Netw 12(7):963–968Google Scholar
  86. 86.
    Ueda K, Horiike S, Zen K, Misawa S, Taniwaki M (2006) Complete cytogenetic and molecular response to treatment with imatinib mesylate for Philadelphia chromosome positive acute myeloid leukemia with multilineage dysplasia. Leuk Lymphoma 47(9):1967–1969CrossRefPubMedGoogle Scholar
  87. 87.
    Hehlmann R (2012) How I treat CML blast crisis. Blood. doi: 10.1182/blood-2012-03-380147 Google Scholar
  88. 88.
    Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, Cervantes F, Clark RE, Cortes JE, Guilhot F, Hjorth-Hansen H, Hughes TP, Kantarjian HM, Kim DW, Larson RA, Lipton JH, Mahon FX, Martinelli G, Mayer J, Müller MC, Niederwieser D, Pane F, Radich JP, Rousselot P, Saglio G, Saußele S, Schiffer C, Silver R, Simonsson B, Steegmann JL, Goldman JM, Hehlmann R (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. doi: 10.1182/blood-2013-05-501569 Google Scholar
  89. 89.
    Wassmann B, Pfeifer H, Goekbuget N, Beelen DW, Beck J, Stelljes M, Bornhäuser M, Reichle A, Perz J, Haas R, Ganser A, Schmid M, Kanz L, Lenz G, Kaufmann M, Binckebanck A, Brück P, Reutzel R, Gschaidmeier H, Schwartz S, Hoelzer D, Ottmann OG (2006) Alternating versus concurrent schedules of imatinib and chemotherapy as front-line therapy for Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL). Blood 108(5):1469–1477CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nina Rosa Neuendorff
    • 1
  • Thomas Burmeister
    • 1
    • 2
  • Bernd Dörken
    • 1
    • 2
  • Jörg Westermann
    • 1
    • 2
  1. 1.Dept. of Hematology, Oncology and Tumor ImmunologyCharité – University Medicine BerlinBerlinGermany
  2. 2.Labor Berlin Charité-Vivantes GmbHBerlinGermany

Personalised recommendations