Annals of Hematology

, Volume 95, Issue 9, pp 1551–1553 | Cite as

Congenital dyserythropoietic anemia associated to a GATA1 mutation aggravated by pyruvate kinase deficiency

  • Janet Pereira
  • Celeste BentoEmail author
  • Licinio Manco
  • Ataulfo Gonzalez
  • Jose Vagace
  • Maria Letícia Ribeiro
Letter to the Editor

Dear Editor,

A 12-year-old Spanish male was referred to our department to elucidate the etiology of a congenital macrocytic anemia (MCV 104 fL; Hb 9.0 g/dL) with dyserythropoiesis, needing blood transfusions during the first 4 months of life, and mild thrombocytopenia (73 × 109/L) with large platelets. At the age of 3 months, he presented: Hb 5.9 g/dL, reticulocytes 105 × 1012/L, peripheral blood smear with anisocytosis, poikilocytosis, and basophilic stippling. He has a low PK activity (45 % of normal). The bone marrow was suggestive of congenital dyserythropoietic anemia (CDA), with erythroid hyperplasia and dyserythropoiesis and orthochromatic erythroblasts showing an irregular nuclear contour and bi- or multi-nucleated erythroblasts; electronic microscopy identified vacuoles in the cytoplasm of erythroblasts.

CDAs are rare forms of bone marrow failure syndromes characterized by ineffective erythropoiesis [1, 2]. There are three classical forms of CDA presentation due to mutations...


Pyruvate Kinase Macrocytic Anemia GATA1 Mutation Ineffective Erythropoiesis Bone Marrow Failure Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the patient and family who consented to this study. We are also grateful to Elizabete Cunha, Luis Relvas, Ana Catarina Oliveira, and Helena Almeida for the assistance in the laboratory work and to Joana Azevedo for the comments on the manuscript. This study was supported in part by Forum Hematológico de Coimbra, Portugal.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statements

Informed consent was obtained from all individual participants included in the study. All procedures were in accordance with the Helsinki Declaration of 1975, as revised in 2008.


  1. 1.
    Wickramasinghe SN, Wood WG (2005) Advances in the understanding of the congenital dyserythropoietic anaemias. Br J Haematol 131:431–446CrossRefPubMedGoogle Scholar
  2. 2.
    Iolascon A, Esposito MR, Russo R (2012) Clinical aspects and pathogenesis of congenital dyserythropoietic anemias: from morphology to molecular approach. Haematologica 97(12):1786–1794CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dgany O, Avidan N, Delaunay J, Krasnov T, Shalmon L, Shalev H, Eidelitz-Markus T, Kapelushnik J, Cattan D, Pariente A, Tulliez M, Crétien A, Schischmanoff PO, Iolascon A, Fibach E, Koren A, Rössler J, Le Merrer M, Yaniv I, Zaizov R, Ben-Asher E, Olender T, Lancet D, Beckmann JS, Tamary H (2002) Congenital dyserythropoietic anemia type I is caused by mutations in codanin-1. Am J Hum Genet 71:1467–1474CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bianchi P, Fermo E, Vercellati C, Boschetti C, Barcellini W, Iurlo A, Marcello AP, Righetti PG, Zanella A (2009) Congenital dyserythropoietic anemia type II (CDA II) is caused by mutations in the SEC23B gene. Hum Mutat 30:1292–1298CrossRefPubMedGoogle Scholar
  5. 5.
    Liljeholm M, Irvine AF, Vikberg AL, Norberg A, Month S, Sandström H, Wahlin A, Mishima M, Golovleva I (2013) Congenital dyserythropoietic anemia type III (CDA III) is caused by a mutation in kinesin family member, KIF23. Blood 121(23):4791–4799CrossRefPubMedGoogle Scholar
  6. 6.
    Arnaud L, Saison C, Helias V, Lucien N, Steschenko D, Giarratana MC, Prehu C, Foliguet B, Montout L, de Brevern AG, Francina A, Ripoche P, Fenneteau O, Da Costa L, Peyrard T, Coghlan G, Illum N, Birgens H, Tamary H, Iolascon A, Delaunay J, Tchernia G, Cartron JP (2010) A dominant mutation in the gene encoding the erythroid transcription factor KLF1 causes a congenital dyserythropoietic anemia. Am J Hum Genet 87:721–727CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nichols KE, Crispino JD, Poncz M, White JG, Orkin SH, Maris JM, Weiss MJ (2000) Familial dyserythropoietic anaemia and thrombocytopenia due to an inherited mutation in GATA1. Nat Genet 24:266–270CrossRefPubMedGoogle Scholar
  8. 8.
    Ciovacco WA, Raskind WH, Kacena MA (2008) Human phenotypes associated with GATA-1 mutations. Gene 427(1–2):1–6CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Imanishi M, Imamura C, Higashi C, Yan W, Negi S, Futaki S, Sugiura Y (2010) Zinc finger-zinc finger interaction between the transcription factors, GATA-1 and Sp1. Biochem Biophys Res Commun 400(4):625–630CrossRefPubMedGoogle Scholar
  10. 10.
    Manco L, Ribeiro ML, Máximo V, Almeida H, Costa A, Freitas O, Barbot J, Abade A, Tamagnini G (2000) A new PKLR gene mutation in the R-type promoter region affects the gene transcription causing pyruvate kinase deficiency. Br J Haematol 110:993–997CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Janet Pereira
    • 1
  • Celeste Bento
    • 1
    Email author
  • Licinio Manco
    • 1
  • Ataulfo Gonzalez
    • 2
  • Jose Vagace
    • 3
  • Maria Letícia Ribeiro
    • 1
  1. 1.Serviço de Hematologia Clínica, Hospital PediátricoCentro Hospitalar e Universitário de CoimbraCoimbraPortugal
  2. 2.Departamento de HematologíaHospital Clínico San CarlosMadridSpain
  3. 3.Departamento de Hematología PediátricaHospital Materno InfantilBadajozSpain

Personalised recommendations