Advertisement

Annals of Hematology

, Volume 95, Issue 8, pp 1223–1232 | Cite as

Cytogenetic profiles of 2806 patients with acute myeloid leukemia—a retrospective multicenter nationwide study

  • Ja Min Byun
  • Young Jin Kim
  • Hwi-Joong Yoon
  • Si-Young Kim
  • Hee-Je Kim
  • Jaeho Yoon
  • Yoo Hong Min
  • Jun-Won Cheong
  • Jinny Park
  • Jae Hoon Lee
  • Dae Sik Hong
  • Seong Kyu Park
  • Hyeoung-Joon Kim
  • Jae-Sook Ahn
  • Ho-Jin Shin
  • Joo Seop Chung
  • Won Sik Lee
  • Sang Min Lee
  • Yong Park
  • Byung Soo Kim
  • Je-Hwan Lee
  • Kyoo-Hyung Lee
  • Chul Won Jung
  • Jun Ho Jang
  • Woo-Sung MinEmail author
  • Tae Sung ParkEmail author
  • on behalf of the AML/MDS working party of Korean Society of Hematology
Original Article

Abstract

The cytogenetic and molecular data is recognized as the most valuable prognostic factor in acute myeloid leukemia (AML). Our aim was to systemically analyze the cytogenetics of Korean AML patients and to compare the cytogenetic profiles of various races to identify possible geographic heterogeneity. We retrospectively reviewed medical records of 2806 AML patients diagnosed at 11 tertiary teaching hospitals in Korea between January 2007 and December 2011. The most common recurrent chromosomal abnormality was t(8;21) (8.8 %, 238/2717), but t(15;17) showed an almost same number (8.6 %,235/2717). Among de novo AML, the most frequent aberrations were t(15;17), observed in 229 (10.7 %). The most common French-American-British (FAB) classification type was M2 (32.2 %), and recurrent cytogenetic abnormalities correlated with the FAB subtypes. Among 283 secondary AML cases, myelodysplastic syndrome was the most common predisposing factor. About 67.1 % of the secondary AML cases were associated with chromosomal aberrations, and chromosome 7 abnormalities (n = 45, 15.9 %) were most common. The incidence of FLT3 internal tandem duplication mutation was relatively low at 15 %. Our study reports certain similarities and differences in comparison to previous reports. Such discrepancies call for extensive epidemiological studies to clarify the role of genetic as well as geographic heterogeneity in the pathogenesis of AML.

Keywords

Acute myeloid leukemia Cytogenetics Chromosomal abnormalities Population study 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2014R1A1A1002797).

Compliance with ethical standards

This study was conducted according to the Declaration of Helsinki and was approved by the institutional review board of all the participating hospitals. In light of the retrospective nature of the study, informed consent was waived.

Conflict of interest

No conflict of interest to disclose.

Supplementary material

277_2016_2691_MOESM1_ESM.docx (17 kb)
ESM 1 (DOCX 16 kb)
277_2016_2691_MOESM2_ESM.docx (20 kb)
ESM 2 (DOCX 20 kb)
277_2016_2691_MOESM3_ESM.docx (18 kb)
ESM 3 (DOCX 18 kb)

References

  1. 1.
    Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951CrossRefPubMedGoogle Scholar
  2. 2.
    Dohner H, Estey EH, Amadori S, Appelbaum FR, Buchner T, Burnett AK et al (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115(3):453–474CrossRefPubMedGoogle Scholar
  3. 3.
    Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al (2002) Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 100(13):4325–4336CrossRefPubMedGoogle Scholar
  4. 4.
    Haferlach T, Kern W, Schoch C, Schnittger S, Sauerland MC, Heinecke A et al (2004) A new prognostic score for patients with acute myeloid leukemia based on cytogenetics and early blast clearance in trials of the German AML Cooperative Group. Haematologica 89(4):408–418PubMedGoogle Scholar
  5. 5.
    Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH et al (2010) Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood 116(3):354–365CrossRefPubMedGoogle Scholar
  6. 6.
    Lowenberg B, Downing JR, Burnett A (1999) Acute myeloid leukemia. N Engl J Med 341(14):1051–1062CrossRefPubMedGoogle Scholar
  7. 7.
    Nakase K, Bradstock K, Sartor M, Gottlieb D, Byth K, Kita K et al (2000) Geographic heterogeneity of cellular characteristics of acute myeloid leukemia: a comparative study of Australian and Japanese adult cases. Leukemia 14(1):163–168CrossRefPubMedGoogle Scholar
  8. 8.
    Johansson B, Mertens F, Mitelman F (1991) Geographic heterogeneity of neoplasia-associated chromosome aberrations. Genes Chromosomes Cancer 3(1):1–7CrossRefPubMedGoogle Scholar
  9. 9.
    Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1985) Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 103(4):620–625CrossRefPubMedGoogle Scholar
  10. 10.
    Breems DA, Van Putten WL, De Greef GE, Van Zelderen-Bhola SL, Gerssen-Schoorl KB, Mellink CH et al (2008) Monosomal karyotype in acute myeloid leukemia: a better indicator of poor prognosis than a complex karyotype. J Clin Oncol 26(29):4791–4797CrossRefPubMedGoogle Scholar
  11. 11.
    Shaffer LG (2009) ISCN: an international system for human cytogenetic nomenclature. Karger, BaselGoogle Scholar
  12. 12.
    Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A et al (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96(13):4075–4083PubMedGoogle Scholar
  13. 13.
    Nakao M, Yokota S, Iwai T, Kaneko H, Horiike S, Kashima K et al (1996) Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia 10(12):1911–1918PubMedGoogle Scholar
  14. 14.
    Park SH, Chi HS, Min SK, Park BG, Jang S, Park CJ (2011) Prognostic impact of c-KIT mutations in core binding factor acute myeloid leukemia. Leuk Res 35(10):1376–1383CrossRefPubMedGoogle Scholar
  15. 15.
    Park SH, Lee HJ, Kim IS, Kang JE, Lee EY, Kim HJ et al (2015) Incidences and prognostic impact of c-KIT, WT1, CEBPA, and CBL mutations, and mutations associated with epigenetic modification in core binding factor acute myeloid leukemia: a multicenter study in a Korean population. Annals Laboratory Med 35(3):288–297CrossRefGoogle Scholar
  16. 16.
    Bacher U, Kern W, Schnittger S, Hiddemann W, Schoch C, Haferlach T (2005) Further correlations of morphology according to FAB and WHO classification to cytogenetics in de novo acute myeloid leukemia: a study on 2,235 patients. Ann Hematol 84(12):785–791CrossRefPubMedGoogle Scholar
  17. 17.
    Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ et al (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 98(5):1312–1320CrossRefPubMedGoogle Scholar
  18. 18.
    Enjeti AK, Tien SL, Sivaswaren CR (2004) Cytogenetic abnormalities in de novo acute myeloid leukemia in adults: relation to morphology, age, sex and ethnicity—a single center study from Singapore. Hematol J 5(5):419–425CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng Y, Wang Y, Wang H, Chen Z, Lou J, Xu H et al (2009) Cytogenetic profile of de novo acute myeloid leukemia: a study based on 1432 patients in a single institution of China. Leukemia 23(10):1801–1806CrossRefPubMedGoogle Scholar
  20. 20.
    So CC, Wan TS, Chow JL, Hui KC, Choi WW, Lam CC, Chan LC (2011) A single-center cytogenetic study of 629 Chinese patients with de novo acute myeloid leukemia—evidence of major ethnic differences and a high prevalence of acute promyelocytic leukemia in Chinese patients. Cancer Genet 204(8):430–438CrossRefPubMedGoogle Scholar
  21. 21.
    Li X, Li X, Xie W, Hu Y, Li J, Du W et al (2012) Comprehensive profile of cytogenetics in 2308 Chinese children and adults with de novo acute myeloid leukemia. Blood Cells Mol Dis 49(2):107–113CrossRefPubMedGoogle Scholar
  22. 22.
    Douer D, Santillana S, Ramezani L, Samanez C, Slovak ML, Lee MS et al (2003) Acute promyelocytic leukaemia in patients originating in Latin America is associated with an increased frequency of the bcr1 subtype of the PML/RARalpha fusion gene. Br J Haematol 122(4):563–570CrossRefPubMedGoogle Scholar
  23. 23.
    Dong S, Geng JP, Tong JH, Wu Y, Cai JR, Sun GL et al (1993) Breakpoint clusters of the PML gene in acute promyelocytic leukemia: primary structure of the reciprocal products of the PML-RARA gene in a patient with t(15;17). Genes Chromosomes Cancer 6(3):133–139CrossRefPubMedGoogle Scholar
  24. 24.
    Biondi A, Luciano A, Bassan R, Mininni D, Specchia G, Lanzi E et al (1995) CD2 expression in acute promyelocytic leukemia is associated with microgranular morphology (FAB M3v) but not with any PML gene breakpoint. Leukemia 9(9):1461–1466PubMedGoogle Scholar
  25. 25.
    Sanz MA, Lo Coco F, Martin G, Avvisati G, Rayon C, Barbui T et al (2000) Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood 96(4):1247–1253PubMedGoogle Scholar
  26. 26.
    Park SS, Cho HI (1997) The t(15;17) breakpoint of the PML gene in acute promyelocytic leukemia. Korean J Clin Pathol 17(6):885–897Google Scholar
  27. 27.
    Fukutani H, Naoe T, Yoshida H, Yamamori S, Ohno R (1993) Molecular heterogeneity of the PML gene rearrangement in acute promyelocytic leukemia: prevalence and clinical significance. Japanese J Cancer Res 84(3):257–264CrossRefGoogle Scholar
  28. 28.
    Claxton DF, Reading CL, Nagarajan L, Tsujimoto Y, Andersson BS, Estey E et al (1992) Correlation of CD2 expression with PML gene breakpoints in patients with acute promyelocytic leukemia. Blood 80(3):582–586PubMedGoogle Scholar
  29. 29.
    Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD (2000) Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci U S A 97(9):4790–4795CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Abe T (1999) Infantile leukemia and soybeans—a hypothesis. Leukemia 13(3):317–320CrossRefPubMedGoogle Scholar
  31. 31.
    Dores GM, Devesa SS, Curtis RE, Linet MS, Morton LM (2012) Acute leukemia incidence and patient survival among children and adults in the United States, 2001–2007. Blood 119(1):34–43CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mitelman F (1986) Geographic heterogeneity of chromosome aberrations in hematologic disorders. Cancer Genet Cytogenet 20(3-4):203–208CrossRefPubMedGoogle Scholar
  33. 33.
    Leone G, Mele L, Pulsoni A, Equitani F, Pagano L (1999) The incidence of secondary leukemias. Haematologica 84(10):937–945PubMedGoogle Scholar
  34. 34.
    Preiss BS, Bergmann OJ, Friis LS, Sorensen AG, Frederiksen M, Gadeberg OV et al (2010) Cytogenetic findings in adult secondary acute myeloid leukemia (AML): frequency of favorable and adverse chromosomal aberrations do not differ from adult de novo AML. Cancer Genet Cytogenet 202(2):108–122CrossRefPubMedGoogle Scholar
  35. 35.
    Mauritzson N, Albin M, Rylander L, Billstrom R, Ahlgren T, Mikoczy Z et al (2002) Pooled analysis of clinical and cytogenetic features in treatment-related and de novo adult acute myeloid leukemia and myelodysplastic syndromes based on a consecutive series of 761 patients analyzed 1976-1993 and on 5098 unselected cases reported in the literature 1974-2001. Leukemia 16(12):2366–2378CrossRefPubMedGoogle Scholar
  36. 36.
    Bang SM, Ahn JY, Park J, Park SH, Park J, Cho EK et al (2008) Low frequency and variability of FLT3 mutations in Korean patients with acute myeloid leukemia. J Korean Med Sci 23(5):833–837Google Scholar
  37. 37.
    Jung CL, Kim HJ, Kim DH, Huh H, Song MJ, Kim SH (2011) CKIT mutation in therapy-related acute myeloid leukemia with MLLT3/MLL chimeric transcript from t(9;11)(p22;q23). Ann Clin Lab Sci 41(2):193–196PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ja Min Byun
    • 1
  • Young Jin Kim
    • 2
  • Hwi-Joong Yoon
    • 3
  • Si-Young Kim
    • 3
  • Hee-Je Kim
    • 4
  • Jaeho Yoon
    • 4
  • Yoo Hong Min
    • 5
  • Jun-Won Cheong
    • 5
  • Jinny Park
    • 6
  • Jae Hoon Lee
    • 6
  • Dae Sik Hong
    • 7
  • Seong Kyu Park
    • 7
  • Hyeoung-Joon Kim
    • 8
  • Jae-Sook Ahn
    • 8
  • Ho-Jin Shin
    • 9
  • Joo Seop Chung
    • 9
  • Won Sik Lee
    • 10
  • Sang Min Lee
    • 10
  • Yong Park
    • 11
  • Byung Soo Kim
    • 11
  • Je-Hwan Lee
    • 12
  • Kyoo-Hyung Lee
    • 12
  • Chul Won Jung
    • 13
  • Jun Ho Jang
    • 13
  • Woo-Sung Min
    • 4
    Email author
  • Tae Sung Park
    • 2
    Email author
  • on behalf of the AML/MDS working party of Korean Society of Hematology
  1. 1.Department of MedicineKyung Hee University Graduate SchoolSeoulRepublic of Korea
  2. 2.Department of Laboratory Medicine, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
  3. 3.Department of Internal Medicine, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
  4. 4.Department of Internal Medicine, Cancer Research Institute, College of MedicineThe Catholic University of KoreaSeoulRepublic of Korea
  5. 5.Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea
  6. 6.Department of Internal MedicineGachon University Gil Medical CenterSeongnam-siRepublic of Korea
  7. 7.Department of Internal MedicineSoonchunhyang University Bucheon HospitalBucheonRepublic of Korea
  8. 8.Department of Internal MedicineChonnam National University Hwasun HospitalHwasunRepublic of Korea
  9. 9.Department of Internal MedicinePusan National University School of MedicineBusanRepublic of Korea
  10. 10.Department of Internal MedicineInje University Busan Paik HospitalBusanRepublic of Korea
  11. 11.Department of Internal MedicineKorea University School of Medicine Anam HospitalSeoulRepublic of Korea
  12. 12.Department of HematologyAsan Medical Center, University of Ulsan College of MedicineSeoulRepublic of Korea
  13. 13.Division of Hematology-OncologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea

Personalised recommendations