Annals of Hematology

, Volume 95, Issue 6, pp 881–891 | Cite as

miR-17-92 cluster components analysis in Burkitt lymphoma: overexpression of miR-17 is associated with poor prognosis

  • Marcela Cristina Robaina
  • Roberta Soares Faccion
  • Luciano Mazzoccoli
  • Lidia Maria M. Rezende
  • Eduardo Queiroga
  • Carlos E. Bacchi
  • Andrei Thomas-Tikhonenko
  • Claudete Esteves KlumbEmail author
Original Article


Burkitt lymphoma (BL) is an aggressive B cell lymphoma characterized by the reciprocal translocation of the c-Myc gene with immunoglobulin genes. Recently, MYC has been shown to maintain the neoplastic state via the miR-17-92 microRNA cluster that suppresses chromatin regulatory genes and the apoptosis regulator Bim. However, the expression and prognostic impact of miR-17-92 members in pediatric BL (pBL) are unknown. Therefore, we investigated miR-17, miR-19a, miR-19b, miR-20, and miR-92a expression and prognostic impact in a series of 41 pBL samples. In addition, Bim protein expression was evaluated and compared to miR-17, miR-19a, miR-19b, miR-20, and miR-92a levels and patient outcomes. The expression of miR-17-92 members was evaluated by qPCR and Bim protein by immunohistochemistry. Log-rank test was employed to assess prognostic impact. We found that upregulated expression of miR-17 and miR-20a correlates with lack of pro-apoptotic Bim expression. Patients bearing tumors with upregulated miR-17 displayed decreased overall survival (OS), and multivariate analysis revealed that miR-17 was a significant predictor of shortened OS. Using hairpin inhibitors, we showed that inhibition of miR-17 resulted in enhanced Bim expression in a BL cell line overexpressing the miR-17-92 cluster. Our results describe for the first time miR-17, miR-19a, miR-19b, miR-20a, and miR-92a expression profiles in pBL. The prognostic impact of miR-17 should be validated in a larger series, and may provide new therapeutic avenues in the era of anti-miRNA therapy research. Additional functional studies are further required to understand the specific role of miR-17-92 cluster members in BL.


Burkitt lymphoma miR-17-92 cluster MYC Bim miR-17 and miR-20a family Prognosis 



We are grateful to all the clinicians who followed the patients included in the study. This work was supported by grants from Instituto Nacional de Ciência e Tecnologia (INCT) para Controle do Câncer: Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) 573806/2008-0/FAPERJ E26/170.026/2008, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) E-26/110.238/2014—PPSUS, Programa de Oncobiologia/Fundação do Câncer, and FAPERJ E-26/110.375/2014. SWISS-BRIDGE Foundation, sub-project 1B/2014. MCR and RSF had a scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PDSE) and Ministério da Saúde/INCA, respectively.

Compliance with ethical standards

The study was approved by the institutional ethics committee (registration number 18/09), in accordance with the Declaration of Helsinki.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Dang CV (2012) MYC on the path to cancer. Cell 149(1):22–35. doi: 10.1016/j.cell.2012.03.003 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F (2006) The c-Myc target gene network. Semin Cancer Biol 16(4):253–264. doi: 10.1016/j.semcancer.2006.07.014 CrossRefPubMedGoogle Scholar
  3. 3.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435(7043):839–843. doi: 10.1038/nature03677 CrossRefPubMedGoogle Scholar
  4. 4.
    Baudino TA, Maclean KH, Brennan J, Parganas E, Yang C, Aslanian A et al (2003) Myc-mediated proliferation and lymphomagenesis, but not apoptosis, are compromised by E2f1 loss. Mol Cell 11(4):905–914CrossRefPubMedGoogle Scholar
  5. 5.
    Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50. doi: 10.1038/ng.2007.30 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bueno MJ, Gomez de Cedron M, Gomez-Lopez G, Perez de Castro I, Di Lisio L, Montes-Moreno S et al (2011) Combinatorial effects of microRNAs to suppress the Myc oncogenic pathway. Blood 117(23):6255–6266. doi: 10.1182/blood-2010-10-315432 CrossRefPubMedGoogle Scholar
  7. 7.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fernando TR, Rodriguez-Malave NI, Rao DS (2012) MicroRNAs in B cell development and malignancy. J Hematol Oncol 5:7. doi: 10.1186/1756-8722-5-7 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lawrie CH (2008) MicroRNA expression in lymphoid malignancies: new hope for diagnosis and therapy? J Cell Mol Med 12(5A):1432–1444. doi: 10.1111/j.1582-4934.2008.00399.x CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Musilova K, Mraz M (2015) MicroRNAs in B-cell lymphomas: how a complex biology gets more complex. Leukemia 29(5):1004–1017. doi: 10.1038/leu.2014.351 CrossRefPubMedGoogle Scholar
  11. 11.
    Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706. doi: 10.1093/nar/gki567 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339(2):327–335. doi: 10.1016/j.jmb.2004.03.065 CrossRefPubMedGoogle Scholar
  13. 13.
    Olive V, Li Q, He L (2013) miR-17-92: a polycistronic oncomir with pleiotropic functions. Immunol Rev 253(1):158–166. doi: 10.1111/imr.12054 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al (2005) MicroRNA expression profiles classify human cancers. Nature 435(7043):834–838. doi: 10.1038/nature03702 CrossRefPubMedGoogle Scholar
  15. 15.
    Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al (2008) Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9(4):405–414. doi: 10.1038/ni1575 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jin HY, Oda H, Lai M, Skalsky RL, Bethel K, Shepherd J et al (2013) MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways. EMBO J 32(17):2377–2391. doi: 10.1038/emboj.2013.178 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132(5):875–886. doi: 10.1016/j.cell.2008.02.019 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robertus JL, Kluiver J, Weggemans C, Harms G, Reijmers RM, Swart Y et al (2010) MiRNA profiling in B non-Hodgkin lymphoma: a MYC-related miRNA profile characterizes Burkitt lymphoma. Br J Haematol 149(6):896–899. doi: 10.1111/j.1365-2141.2010.08111.x CrossRefPubMedGoogle Scholar
  20. 20.
    Li Y, Choi PS, Casey SC, Dill DL, Felsher DW (2014) MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26(2):262–272. doi: 10.1016/j.ccr.2014.06.014 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Campo E, Swerdlow SH, Harris NL, Pileri S, Stein H, Jaffe ES (2011) The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood 117(19):5019–5032. doi: 10.1182/blood-2011-01-293050 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Murphy SB (1980) Classification, staging and end results of treatment of childhood non-Hodgkin’s lymphomas: dissimilarities from lymphomas in adults. Semin Oncol 7(3):332–339PubMedGoogle Scholar
  23. 23.
    Klumb CE, Schramm MT, De Resende LM, Carrico MK, Coelho AM, de Meis E et al (2004) Treatment of children with B-cell non-Hodgkin’s lymphoma in developing countries: the experience of a single center in Brazil. J Pediatr Hematol Oncol 26(7):462–468CrossRefPubMedGoogle Scholar
  24. 24.
    Klumb CE, Hassan R, De Oliveira DE, De Resende LM, Carrico MK, De Almeida DJ et al (2004) Geographic variation in Epstein-Barr virus-associated Burkitt’s lymphoma in children from Brazil. Int J Cancer: Journal international du cancer 108(1):66–70. doi: 10.1002/ijc.11443 CrossRefPubMedGoogle Scholar
  25. 25.
    Queiroga EM, Gualco G, Weiss LM, Dittmer DP, Araujo I, Klumb CE et al (2008) Burkitt lymphoma in Brazil is characterized by geographically distinct clinicopathologic features. Am J Clin Pathol 130(6):946–956. doi: 10.1309/AJCP64YOHAWLUMPK CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25(4):402–408. doi: 10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  27. 27.
    Psathas JN, Doonan PJ, Raman P, Freedman BD, Minn AJ, Thomas-Tikhonenko A (2013) The Myc-miR-17-92 axis amplifies B-cell receptor signaling via inhibition of ITIM proteins: a novel lymphomagenic feed-forward loop. Blood 122(26):4220–4229. doi: 10.1182/blood-2012-12-473090 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kaplan EL, Meier P (1958) Nonparametric-estimation from incomplete observations. J Am Stat Assoc 53(282):457–481. doi: 10.2307/2281868 CrossRefGoogle Scholar
  29. 29.
    Majello B, Perini G (2015) Myc proteins in cell biology and pathology. Biochim Biophys Acta 1849(5):467–468. doi: 10.1016/j.bbagrm.2014.12.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW et al (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68. doi: 10.1016/j.bbrc.2006.07.207 CrossRefPubMedGoogle Scholar
  31. 31.
    Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095CrossRefPubMedGoogle Scholar
  32. 32.
    Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19(11):2013–2016. doi: 10.1038/sj.leu.2403942 CrossRefPubMedGoogle Scholar
  33. 33.
    Sylvestre Y, De Guire V, Querido E, Mukhopadhyay UK, Bourdeau V, Major F et al (2007) An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 282(4):2135–2143. doi: 10.1074/jbc.M608939200 CrossRefPubMedGoogle Scholar
  34. 34.
    Olive V, Jiang I, He L (2010) mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int J Biochem Cell Biol 42(8):1348–1354. doi: 10.1016/j.biocel.2010.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833. doi: 10.1038/nature03552 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Schmitz R, Young RM, Ceribelli M, Jhavar S, Xiao W, Zhang M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. doi: 10.1038/nature11378 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Iqbal J, Shen Y, Huang X, Liu Y, Wake L, Liu C et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125(7):1137–1145. doi: 10.1182/blood-2014-04-566778 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC et al (2013) A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. eLife 2, e00822. doi: 10.7554/eLife.00822 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lai M, Xiao C (2015) Functional interactions among members of the miR-17-92 cluster in lymphocyte development, differentiation and malignant transformation. Int. Immunol. doi: 10.1016/j.intimp.2015.03.041.
  40. 40.
    Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T et al (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102(12):2264–2271. doi: 10.1111/j.1349-7006.2011.02081.x CrossRefPubMedGoogle Scholar
  41. 41.
    Egle A, Harris AW, Bouillet P, Cory S (2004) Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc Natl Acad Sci U S A 101(16):6164–6169. doi: 10.1073/pnas.0401471101 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Mestre-Escorihuela C, Rubio-Moscardo F, Richter JA, Siebert R, Climent J, Fresquet V et al (2007) Homozygous deletions localize novel tumor suppressor genes in B-cell lymphomas. Blood 109(1):271–280. doi: 10.1182/blood-2006-06-026500 CrossRefPubMedGoogle Scholar
  43. 43.
    Inomata M, Tagawa H, Guo YM, Kameoka Y, Takahashi N, Sawada K (2009) MicroRNA-17-92 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 113(2):396–402. doi: 10.1182/blood-2008-07-163907 CrossRefPubMedGoogle Scholar
  44. 44.
    Psathas JN, Thomas-Tikhonenko A (2014) MYC and the art of microRNA maintenance. Cold Spring Harbor perspectives in medicine. 4(8). doi: 10.1101/cshperspect.a014175.
  45. 45.
    Tagawa H, Karnan S, Suzuki R, Matsuo K, Zhang X, Ota A et al (2005) Genome-wide array-based CGH for mantle cell lymphoma: identification of homozygous deletions of the proapoptotic gene BIM. Oncogene 24(8):1348–1358. doi: 10.1038/sj.onc.1208300 CrossRefPubMedGoogle Scholar
  46. 46.
    Anderton E, Yee J, Smith P, Crook T, White RE, Allday MJ (2008) Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene 27(4):421–433. doi: 10.1038/sj.onc.1210668 CrossRefPubMedGoogle Scholar
  47. 47.
    Vereide DT, Sugden B (2011) Lymphomas differ in their dependence on Epstein-Barr virus. Blood 117(6):1977–1985. doi: 10.1182/blood-2010-05-285791 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leventaki V, Rodic V, Tripp SR, Bayerl MG, Perkins SL, Barnette P et al (2012) TP53 pathway analysis in paediatric Burkitt lymphoma reveals increased MDM4 expression as the only TP53 pathway abnormality detected in a subset of cases. Br J Haematol 158(6):763–771. doi: 10.1111/j.1365-2141.2012.09243.x CrossRefPubMedGoogle Scholar
  49. 49.
    Pienkowska-Grela B, Rymkiewicz G, Grygalewicz B, Woroniecka R, Krawczyk P, Czyz-Domanska K et al (2011) Partial trisomy 11, dup(11)(q23q13), as a defect characterizing lymphomas with Burkitt pathomorphology without MYC gene rearrangement. Med Oncol 28(4):1589–1595. doi: 10.1007/s12032-010-9614-0 CrossRefPubMedGoogle Scholar
  50. 50.
    Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J et al (2014) A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood 123(8):1187–1198. doi: 10.1182/blood-2013-06-507996 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Marcela Cristina Robaina
    • 1
    • 4
  • Roberta Soares Faccion
    • 1
  • Luciano Mazzoccoli
    • 1
  • Lidia Maria M. Rezende
    • 2
  • Eduardo Queiroga
    • 3
  • Carlos E. Bacchi
    • 3
  • Andrei Thomas-Tikhonenko
    • 4
    • 5
  • Claudete Esteves Klumb
    • 1
    • 6
    Email author
  1. 1.Programa de Pesquisa em Hemato-Oncologia MolecularInstituto Nacional de CâncerRio de JaneiroBrazil
  2. 2.Divisão de PatologiaInstituto Nacional de CâncerRio de JaneiroBrazil
  3. 3.Consultoria em PatologiaBotucatuBrazil
  4. 4.Division of Cancer PathobiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA
  5. 5.Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaUSA
  6. 6.Laboratório de Hemato-Oncologia Celular e MolecularRio de JaneiroBrazil

Personalised recommendations